

30W DMX 'Dim to Dark' LED Driver

SOLOdrive

SOLOdrive offers industry-best Natural Dimming to dark - LED dimming made beautiful! With any dimmer, in any application. Symbiosis on SOLOdrive stands for unity, for the SOLOdrive working seamlessly together with LED modules, controls and intelligent luminaire elements.

Product offering

SOLOdrive 30S-M1Z0X

Part number (P/N)	SL30S-M1Z0X1
Product description	SOLOdrive AC, 30W, DMX, 1 control channel, constant current, 1x 42V output, side feed, square metal

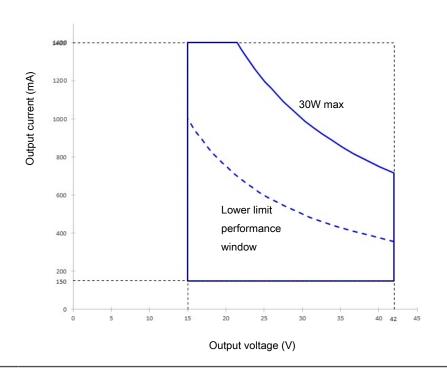
Features & benefits

Natural dimming	Dim to dark, smooth brightness changes, excellent flicker performance, adaptable dimming curves, configurable minimum dimming level
Symbiosis	Seamless interoperability with LED modules, controls and in-luminaire intelligent devices
LEDcode	Configurable design to work with most constant current LED modules and arrays, while providing a connection point to integrated peripheral controls
Programmable	Fine-tune your driver for any application
Performance	Universal input voltage range, low inrush current and total harmonic distortion (THD), high power factor and efficiency
Camera compatibility	Hybrid HydraDrive technology is proven to work in TV studios and security camera environments

Programming interface	TOOLbox pro (TLU20504)
Programming cable set	TOOLbox pro to LED driver, programming cable, 5pcs (TLC03051)
Programming Hand-held, Touch-and-Go	PJ0050HL1
Programming jig	PJ0500SS1
Programming software	FluxTool

Order number configurator

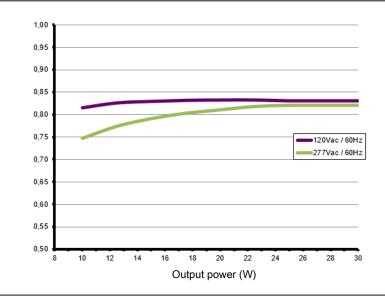
P/N	LED driver part	number.		
LED output current	Enter value in 1	mA increments, e.g.	"811" for 811mA	
Dimming curve	"LOG" for logar "LIN" for linear "SQU" for squa			
Default start-up and fail mode	of DMX (defaul Enter "ARCH" t loss of DMX.	t). o start-up the driver a	at 20% and retain its last the state of the	ast value with the
	the following fo the DMX drop I values in the ta	rmat: S_D_ where S_ evel. The underscore ble below. E.g. for a	ecify the start-up and D defines the start-up less can be [0-9, F, R] coldriver configured to sta G3D6" in the order num	vel and D_ defines rresponding to the rt-up at 30% and go
	Selection	Description	Selection	Description
	0%	0	60%	6
	10%	1	70%	7
	20%	2	80%	8
	30%	3	90%	9
	40%	4	100%	F
	50%	5	Retain last value*	R*
	*Only applicab	e to DMX drop level		
Pre-programmed customer specific RDM IDs	•	ific RDM IDs may be esentative for more d	pre-programmed from etails.	the factory. Contact


Input characteristics	
Nominal input voltage range AC	120 - 277V (UL)
Absolute input voltage range AC	108 - 305V
Maximum input current	0.35A @ 120V / 60Hz
	0.15A @ 277V / 60Hz
Input frequency range	50 - 60Hz
Efficiency at full load	83%
Power factor at full load	>0.95
THD at full load	<20%
Maximum inrush current	<200mA²s @ 120V / 60Hz
	<200mA ² s @ 277V / 60Hz
Surge protection	2.5kV differential mode (DM) 2.5kV common mode (CM)
Maximum standby power	0.5W

Output characteristics		
Maximum LED output power	30W	
Number of LED outputs	1	
Programmable LED output current range	150 - 1400mA	
LED output type	Programmable in 1mA increments within specified current range	
LED output current tolerance	+/- 5% at programmed LED output current	
LED output voltage range	15 - 42V	

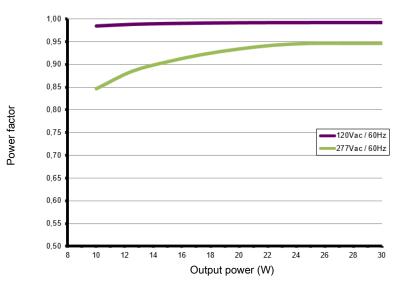
Operating window

Control channels	1
Control protocol	LEDcode
	DMX/RDM
Dimming range	100% - 0.1%
Dimming curve options	Logarithmic (default) Linear Square
Dimming method	Hybrid HydraDrive
Time delay to standby	<30s
Dimming curves	(%) Jawood Indino 100 90 80 70 Square Linear Square Logarithmic 30 20 10 20 40 60 80 Dimming level (%)

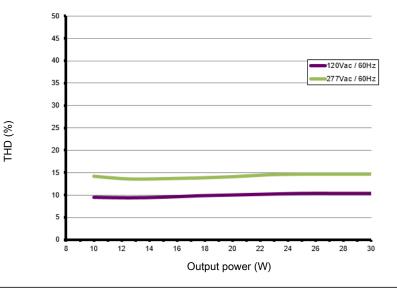


Performance

Typical efficiency vs load

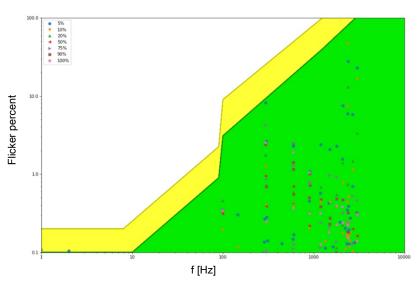

Tested with a load of 6 LEDs in series, programmed for 1400mA and at 25 °C ambient temperature. The measurements below 30W were performed by dimming the light output.

Efficiency (%)

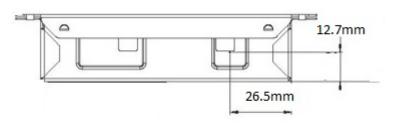

Typical power factor vs load

Tested with a load of 6 LEDs in series, programmed for 1400mA and at 25 °C ambient temperature. The measurements below 30W were performed by dimming the light output.

Typical THD vs load


Tested with a load of 6 LEDs in series, programmed for 1400mA and at 25 °C ambient temperature. The measurements below 30W were performed by dimming the light output.

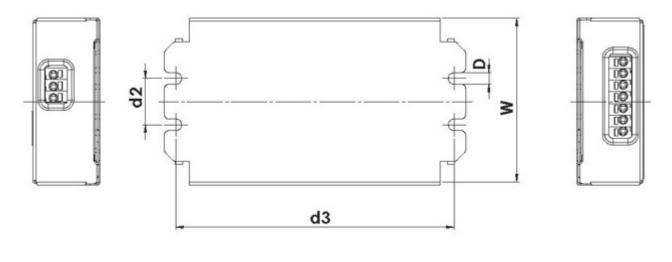
Typical flicker performance

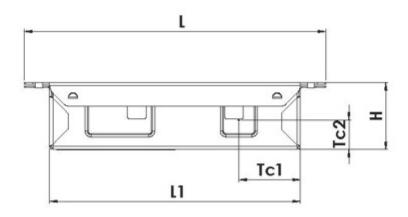

Typical flicker percent as a function of frequency, measured across the dimming range. The results are overlaid with the low-risk (yellow) and no observable effect (green) levels as defined in IEEE P1789.

Environmental conditions

Operating ambient temperature (Ta) range	-20 °C to +50 °C
Maximum operating case temperature (Tc max)	75 °C
Lifetime	50000 hours at a maximum case temperature (Tc) of 75 °C

TC point location





Thermal	The LED output current is decreased whenever the internal LED driver
Themal	temperature exceeds factory preset temperature. The LED output current is
	increased again once the internal LED driver temperature drops below this
	internal temperature threshold. If the internal LED driver temperature continues
	to increase, despite a decrease in output current, the LED driver will shut down
LED output short circuit	The LED output current is cut off whenever the LED driver detects a short-
	circuit. The LED driver will attempt a restart every 400ms after a short-circuit is detected.
LED output overload	The LED driver decreases the LED output current sequentially, until it reaches
	its maximum rated power, whenever a load that exceeds the LED driver's
	maximum rated power is connected to the LED output.
Reverse polarity	The LED driver will not yield any current if the polarity of the load on the LED
	output is reversed. This situation will not damage the LED driver but may
	damage the LED load.
LED protection	
Thermal protection LED	An external NTC thermistor, which is placed on a PCB near the LEDs, can be connected to the driver via the LEDcode/NTC terminals. The output current to
	the LEDs is then decreased by 75% whenever the NTC exceeds a maximum
	allowable temperature, which is specified by the user in the FluxTool software.
	The default NTC temperature limit is set to 70 °C.
Thermistor value	47kΩ
Thermistor value Suitable thermistors	<u> </u>

LED driver mechanical details

Length (L)	typical: 130.0 mm / 5.12 in
	maximum: 132.0 mm / 5.20 in
Width (W)	typical: 72.4 mm / 2.85 in
	maximum: 73.7 mm / 2.90 in
Height (H)	typical: 29.0 mm / 1.14 in
	maximum: 29.7 mm / 1.17 in
Mounting hole diameter (D)	typical: 5.0 mm / 0.20 in
	maximum: 5.3 mm / 0.21 in
Center to center mounting hole distance (d2)	typical: 20.0 mm / 0.79 in
	maximum: 20.2 mm / 0.80 in
Center to center mounting hole distance (d3)	typical: 120.0 mm / 4.72 in
	maximum: 122.0 mm / 4.80 in

Mounting torque	Not to exceed 0.5Nm
Weight	267 g
3D files available on product web page	IGS STEP
Length excluding flanges (L1)	typical: 108.8 mm / 4.26 in maximum: 110.8 mm / 4.36 in

Packaging

Length x Width x Height	500x300x190 mm / 19.6x11.8x7.1 in
Weight (including products)	11.23 kg
Products per box	40 pcs

Connector layout

Input wiring specifications

Connector type	push-in terminals
Connector supplier and series	DECA MWX420-500A series
Wire type	solid copper
Wire core cross section	0.5 - 1.5 mm² AWG 20 – 16
Wire strip length	9.0 mm

Connector type	push-in terminals						
	<u>`</u>						
Connector supplier and series	DECA MWX420-500A series						
Wire type	solid copper						
Wire core cross section	0.5 - 1.5 mm² AWG 20 – 16						
Wire strip length	9.0 mm						
Maximum remote mounting distance of LED load	AWG 20 (0.52 mm²) - 14 m / 46 ft AWG 19 (0.65 mm²) - 18 m / 59 ft AWG 18 (0.82 mm²) - 22 m / 72 ft AWG 17 (1.04 mm²) - 28 m / 92 ft AWG 16 (1.31 mm²) - 36 m / 118 ft						
Automatic circuit breakers (MCB) Maximum loading	MCB type	B10	B13	B16	C10	C13	C16
	Number of LED drivers	33	43	53	33	43	53
Standards and compliance UL Listed, Class P	UL 1310 UL 8750 (Class 2 output)						
Conducted emissions	FCC title 47 CFR part 15 class A (@ 277Vac)						
	FCC title 47 CFR part 15 class B (@ 120Vac)						
Radiated emissions	FCC title 47 CFR part 15 class A (@ 277Vac)						
	FCC title 47 CFR part 15 class B (@ 120Vac)						
Electrostatic discharge	EN 61000-4-2						
Electrical fast transient	EN 61000-4-4						
Voltage dips	EN 61000-4-11						
DMX	E1.11 – 2008, USITT DMX512-A ANSI E1.20						
	ANSI 62.41 1991 category B1: 2.5kV DM, 2.5kV CM @ 30 Ohm						
Surge protection	ANSI 62.41 1991 category B1: 2.5kV	DM, 2.5	KV CIVI	w 30	011111		
Surge protection Restriction of hazardous substances	ANSI 62.41 1991 category B1: 2.5kV RoHS3 (Directives 2011/65/EU-2015/			<u> </u>			

Certifications

Safety	
4	Risk of electrical shock. May result in serious injury or death. Disconnect power before servicing or installing.
<u></u>	The LED driver may only be connected and installed by a qualified electrician. All applicable regulations, legislation, and building codes must be observed. Incorrect installation of the LED driver can cause irreparable damage to the LED driver and the connected LEDs.
	Pay attention when connecting the LEDs: polarity reversal results in no light output and often damages the LEDs.
<u></u>	LED drivers are designed and intended to operate LED loads only. Powering non-LED loads may push the LED driver outside its specified design limits and is, therefore, not covered by any warranty.
(j)	eldoLED products are designed to meet the performance specifications as outlined at certain operating conditions in the data sheet. It is the responsibility of the fixture manufacturer to test and validate the design and operation of the system under expected and potential use cases, including faults.
(j)	Please observe voltage drop over long cable lengths. Longer cable lengths increase EMI susceptibility.
(j)	Product renderings and dimensional drawings are generic for the housing type. Product label, connector type and quantity may vary.

Europe, Rest of World

eldoLED B.V. Science Park Eindhoven 5125 5692 ED Son The Netherlands

E: info@eldoled.com W: www.eldoled.com

North America

eldoLED America One Lithonia Way Conyers, GA 30012 USA

E: info@eldoled.com W: www.eldoled.com