СТРУКТУРОСКОП ВИХРЕТОКОВЫЙ ВЭ-26НП

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Иа2.778.013 РЭ

СОДЕРЖАНИЕ

1 УСТРОЙСТВО И РАБОТА СТРУКТУРОСКОПА 4
2 ПОДГОТОВКА СТРУКТУРОСКОПА К РАБОТЕ И ПОРЯДОК
РАБОТЫ7
3 ОПИСАНИЕ ПРОГРАММЫ ПРИЕМА ДАННЫХ
КОМПЬЮТЕРОМ ИЗ ПАМЯТИ СТРУКТУРОСКОПА 16
4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ17
5 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ
УСТРАНЕНИЯ18
6 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ 19

Настоящее руководство по эксплуатации (РЭ) позволяет ознакомиться с устройством и работой структуроскопа вихретокового ВЭ-26НП (далее по тексту — структуроскоп) и устанавливает правила его эксплуатации, соблюдение которых обеспечивает поддержание его в постоянной готовности к работе.

1 УСТРОЙСТВО И РАБОТА СТРУКТУРОСКОПА

1.1 Принцип работы структуроскопа основан на использовании метода вихревых токов с применением фазового способа обработки сигнала накладного преобразователя.

1.2 Структурная схема структуроскопа приведена на рис. 1.1.

автогенератор, 2 - преобразователь,
усилитель-сумматор, 4 -компенсатор, 5 – фазометр,
коммутатор, 7 – термометр, 8 - блок процессорный,
9 - блок памяти, , 10 - блок индикации,
11 - блок питания стабилизированный

Рис. 1.1 Схема структурная структуроскопа вихретокового ВЭ-26НП Структуроскоп работает следующим образом.

Автогенератор 1 вырабатывает синусоидальный ток для питания преобразователя 2. Сигнал с выхода преобразователя 2, несущий информацию о параметрах объекта контроля, поступает на вход усилителя-сумматора 3, на второй и третий входы которого поступают настроенные в квадратуре напряжения с компенсатора 4. Формируются выходные напряжения компенсатора 4 из напряжения, пропорционального току возбуждения преобразователя и поступающего от автогенератора 1. Эти напряжения выбираются такой величиной, что фаза выходного напряжения усилителя-сумматора 3 практически не зависит от изменения зазора между преобразователем и контролируемой поверхностью и является функцией удельной электрической проводимости. Напряжение с выхода усилителя-сумматора 3 подается на вход фазометра 5, опорное напряжение на который подается от автогенератора 1. На вход процессорного блока 8 через коммутатор 6 подается либо выходное напряжение фазометра 5, либо выходное напряжение термометра 7. Термометр 7 измеряет температуру окружающей среды. Это значение используется в процессорном блоке 8 для определения приведенного к температуре +20°С значения удельной электрической проводимости. Процессорный блок 8 преобразует входное напряжение в цифровой код, производит его обработку по заданному алгоритму, передает информацию об удельной электрической проводимости измеряемого объекта в блок 10 индикации и, при необходимости, в блок 9 памяти. Блок 10 индикации высвечивает информацию об измеряемой удельной электрической проводимости объекта при данной температуре, или о приведенном значении удельной электрической проводимости объекта при температуре 20°С, или об измеряемом приращении удельной электрической проводимости объекта, или измеренной ранее удельной электрической проводимости, величина которой была внесена в блок 9 памяти. Кроме того на дисплее блока 10 индикации может отображаться информация о выполнении структуроскопом той или иной операции. Блок 9 памяти позволяет запоминать результаты измерений. Электропитание всех узлов структуроскопа осуществляется от стабилизированного блока 11 питания

@ Иа2·778.013 РЭ

1.3 Внешний вид структуроскопа показан на рис. 1.2. Структуроскоп состоит из электронного блока 1 и преобразователя 2, соединенных гибким кабелем 3.

Рис. 1.2 Внешний вид структуроскопа

1.3.1 На передней панели электронного блока 1 находятся дисплей 1.1, панель управления структуроскопом 1.2 и встроенный калибратор 1.3. Дисплей 1.1 предназначен для отображения режимов работы, параметров настройки структуроскопа и измеряемых значениях удельной электрической проводимости. Панель управления 1.2 предназначена для ввода параметров настройки структуроскопа, переключения режимов работы и для работы с памятью. Встроенный калибратор 1.3 предназначен для настройки структуроскопа. В верхней части электронного блока расположен передатчик ИК-порта для передачи накопленных в памяти структуроскопа данных в компьютер. На левой боковой стенке находится выключатель питания 1.5. Доступ к батарейному отсеку осуществляется через крышку на задней стенке электронного блока.

1.3.2 Преобразователь 2 представляет собой накладной вихретоковый преобразователь трансформаторного типа, катушки которого расположены в стержне 2.1, вставленном в корпус 2.2 и имеющем некоторую свободу перемещения вдоль оси. Для обеспечения нормированного усилия прижатия стержня к поверхности контролируемого изделия используется пружина (на рис. 1.2 не показана).

2 ПОДГОТОВКА СТРУКТУРОСКОПА К РАБОТЕ И ПОРЯДОК РАБОТЫ

2.1 Подготовка структуроскопа к работе

2.1.1 Перед включением после транспортирования выдержать структуроскоп в нормальных условиях применения не менее 2 ч.

2.1.2 Вложить в батарейный отсек батарею типа РРЗ, подсоединив ее к контактной колодке.

<u>Внимание</u>: Во избежание вытекания батареи не оставляйте ее в батарейном отсеке, если Вы длительное время не пользуетесь структуроскопом.

2.1.3 Включить структуроскоп, переведя движок выключателя в верхнее (в сторону кабеля преобразователя) положение. При этом должен засветиться дисплей, показывая

что соответствует режиму измерения удельной электрической проводимости.

2.1.4 Дать структуроскопу прогреться в течение 15 мин.

@ Иа2·778.013 РЭ

2.2 Настройка структуроскопа перед проведением измерений

Настройка структуроскопа перед проведением измерений должна выполняться с использованием пластин I и II калибратора.

<u>Примечание</u>: При настройке структуроскопа удерживать клавиши в нажатом состоянии не менее одной секунды.

2.2.1 Установить преобразователь на пластину I калибратора. На дисплее должно появиться ориентировочное значение удельной электрической проводимости, соответствующее пластине I калибратора.

2.2.2 Нажать однократно клавишу "**V**". Структуроскоп запомнит параметры первой настроечной точки, о чем свидетельствует надпись на дисплее:

2.2.3 Нажать клавишу "**O**". Структуроскоп перейдет к режиму настройки второй калибровочной точки, о чем свидетельствует надпись на дисплее:

2.2.4 Установить преобразователь на пластину II калибратора.

2.2.5 Нажать клавишу "**O**". Структуроскоп запомнит параметры настройки и автоматически перейдет к режиму ввода температурного коэффициента удельной электрической проводимости, о чем свидетельствует надпись на дисплее

2.2.6 Нажать однократно клавишу " ∇ ". На дисплее должно появиться значение, соответствующее значению температурного коэффициента удельной электрической проводимости в процентах на градус. Если значение на дисплее отличается от нулевого, то с помощью клавиш " \uparrow " и " \Downarrow " установить на дисплее значение коэффициента. **2.2.7** Нажать кратковременно клавишу "**O**". Структуроскоп запомнит значение температурного коэффициента удельной электрической проводимости и автоматически перейдет в режим измерений абсолютных значений удельной электрической проводимости, о чем свидетельствует надпись на дисплее

При появлении надписи "*Я∟ЕЯ*" нажать последовательно клавиши "∇" и "**О**".

2.2.8 Проверить правильность настройки структуроскопа по следующей методике:

2.2.8.1 Установить преобразователь на пластину I калибратора и считать показания. Они не должны отличаться от значения удельной электрической проводимости, вычисленного по формуле из таблицы 2.2 для пластины I, более, чем на 0,04 МСм/м.

2.2.8.2 Установить преобразователь на пластину II калибратора и считать показания. Они не должны отличаться от значения удельной электрической проводимости, вычисленного по формуле из таблицы 2.2 для пластины II, более, чем на 0,4 МСм/м.

Таблица 2.2.

Пластины	Значение удельной электрической		
Калибратора	проводимости, МСм/м		
Ι	(1-0,0015(t-20)) (t – температура		
II	(1-0,004(t-20)) окружающей среды, °С)		

При невыполнении требований пп. 2.2.8.1 и 2.2.8.2 повторить настройку структуроскопа в соответствии с требованиями пп.2.2.1...2.2.7 настоящего руководства по эксплуатации. Проверку по п. 2.2.8 необходимо выполнять не реже одного раза в час.

2.3 Проведение измерений

2.3.1 Измерение абсолютных значений

2.3.1.1 Установить преобразователь на контролируемый участок изделия и произвести считывание показаний дисплея в МСм/м.

<u>Внимание:</u> Во избежание преждевременного износа рабочей поверхности преобразователя не допускается его перемещение по поверхности изделия скольжением.

2.3.1.2 Для следующего измерения снять преобразователь с контролируемого изделия и повторить действия п.2.3.1.1. после индикации

2.3.1.3 Если во время работы структуроскопа необходимо изменить значение температурного коэффициента удельной электрической проводимости, то нажать клавишу "**O**" и изменить его в соответствии с пп.2.2.6. ... 2.2.7, выбирая нужное значение.

2.3.2 Сортировка изделий по удельной электрической проводимости

2.3.2.1 Перейти в режим измерения приращений удельной электрической проводимости, для чего снять преобразователь с контролируемой поверхности и нажать клавишу "1". На дисплее появится

Работа в режиме измерения приращений начинается с ввода базового значения удельной электрической проводимости.

2.3.2.2 Установить преобразователь на контролируемый участок изделия с базовой удельной электрической проводимостью, относительно которого, в дальнейшем, будут измеряться приращения удельной электрической проводимости, и, удерживая его, нажать клавишу "**O**". Структуроскоп запомнит значение базовой удельной электриче-

ской проводимости. На дисплее появится браковочное значение приращения удельной электрической проводимости в МСм/м, например,

после чего преобразователь можно снять с контролируемого изделия.

2.3.2.3 Если значение на дисплее отличается от требуемого, то с помощью клавиш "↑" и "↓" установить на дисплее нужное значение браковочного значения в МСм/м.

2.3.2.4 Нажать клавишу "**O**". Структуроскоп запомнит браковочное значение приращения удельной электрической проводимости и автоматически перейдет в режим сортировки по удельной электрической проводимости. На дисплее появится

2.3.2.5 Установить преобразователь на контролируемый участок изделия и произвести считывание с дисплея значения приращения удельной электрической проводимости относительно базового значения в МСм/м.

Если приращение измеряемой удельной электрической проводимости превышает браковочное значение отклонения удельной электрической проводимости, то индицируется

2.3.2.6 Для следующего измерения снять преобразователь с контролируемого изделия и повторить действия п.2.3.2.5 после индикации

2.3.2.7 Если во время работы структуроскопа необходимо изменить значение базовой удельной электрической проводимости или браковочное значение приращения нажать клавишу "¹" и изменить их в соответствии с пп.2.3.2.2...2.3.2.4.

2.3.2.8 Для переключения в режим измерений абсолютных значений удельной электрической проводимости снять преобразователь с контролируемого изделия и нажать клавишу " \Downarrow ". На дисплее появится

2.3.3 Структуроскоп позволяет запомнить результаты измерений с целью их последующего чтения на дисплее и (или) передачи в персональный компьютер (см. раздел 2.4 настоящего руководства по эксплуатации).

2.3.4 Во время работы структуроскопа необходимо не реже, чем один раз в полчаса проверять его настройку в соответствии с п. 2.2.8. настоящего Руководства по эксплуатации и при необходимости производить подстройку в соответствии с разделом 2.2 настоящего руководства по эксплуатации.

2.3.5 При разряде батареи питания на дисплее высвечивается

В этом случае необходимо произвести замену элементов питания, предварительно выключив структуроскоп с помощью движка выключателя на левой боковой стенке электронного блока.

2.3.6 По окончании работы выключить структуроскоп с помощью движка выключателя на левой боковой стенке электронного блока.

2.3.7 После выключения питания структуроскоп сохраняет параметры настройки. При следующем сеансе работы можно проверить его настройку в соответствии с п. 2.2.8. настоящего руководства по эксплуатации и при необходимости провести его подстройку в соответствии с разделом 2.2 настоящего руководства по эксплуатации.

2.4 Работа со встроенной памятью структуроскопа

Вход в любой из режимов работы с памятью структуроскопа возможен только из режима измерения.

2.4.1 Запись результатов измерений в память структуроскопа

2.4.1.1 Запись результатов измерений в память структуроскопа осуществляется последовательно, когда каждый новый результат пишется в ячейку, номер которой на единицу больше предыдущего. Для выбора начального адреса ячейки (минимальное значение **0000**), если это необходимо, нажать клавишу "Чт." (на дисплее высветится текущий адрес ячейки памяти) и с помощью клавиш "↑" и "↓" установить нужный адрес. Данные клавиши имеют двойную функцию: при однократном нажатии значение адреса изменяется на единицу, при нажатии с удержанием значение адреса изменяется непрерывно, причем скорость изменения со временем увеличивается.

2.4.1.2 Нажать клавишу "**О**" для возврата в режим измерений.

<u>Примечания:</u> 1) Если начальный адрес записи не имеет значения, то nn.2.4.1.1 и 2.4.1.2 выполнять не обязательно.

> 2) После выполнения операции очистки памяти (см. раздел 2.4.4 настоящего руководство по эксплуатации) в качестве начального адреса автоматически устанавливается номер 0000.

2.4.1.3 Для запоминания результата измерений, индицируемого на дисплее структуроскопа, нажать клавишу "Зап.". На дисплее зафиксируется измеряемая величина удельной электрической проводимости изделия или ее приращение даже если снять преобразователь с поверхности контролируемого изделия.

2.4.1.4 Для подтверждения запоминания результата измерений нажать еще раз клавишу "**Зап.**", а для отказа от запоминания нажать любую другую клавишу. В любом случае структуроскоп вернется в режим измерений.

<u>Примечание:</u> При записи результата измерений в память текущий адрес ячейки увеличивается на единицу, при отказе от запоминания адрес не изменяется.

2.4.2 Вывод из памяти результатов измерений на дисплей структуроскопа.

2.4.2.1 Нажать клавишу "**Чт.**". На дисплее появится значение адреса ячейки памяти, содержимое которой будет прочитано.

2.4.2.2 При необходимости изменения адреса ячейки нажать клавишу "↑" или "↓". Данные клавиши имеют двойную функцию: при однократном нажатии значение адреса изменяется на единицу, при нажатии с удержанием значение адреса изменяется непрерывно, причем скорость изменения со временем увеличивается.

2.4.2.3 Нажать клавишу "**Чт.**". На дисплее появится значение удельной электрической проводимости покрытия, записанное в ячейку с установленным адресом.

Если в ячейке отсутствует записанная информация, то на дисплее высвечивается

2.4.2.4 Для чтения содержимого следующей ячейки памяти (адрес ячейки увеличивается на единицу) нажать клавишу "**Чт.**".

2.4.2.5 Для чтения содержимого ячеек с произвольным расположением адресов необходимо каждый раз выполнять требования пп.2.4.2.2 и 2.4.2.3.

2.4.2.6 Для выхода из режима чтения в режим измерений нажать любую из клавиш "们" или "Џ" и клавишу "**O**".

2.4.3 Передача данных памяти структуроскопа в персональный компьютер.

2.4.3.1 Подключить ИК-адаптер к СОМ-порту персонального компьютера.

2.4.3.2 Включить компьютер и загрузить программу VE_tr.exe, устанавливаемую с прилагаемого к структуроскопу компакт-диска.

2.4.3.3 Включить структуроскоп и нажать клавишу "Пер." для подготовки структуроскопа к передаче содержимого памяти.

После нажатия клавиши "Пер." на дисплее появится скорость передачи информации

2.4.3.4 Для отказа от передачи данных нажать любую клавишу кроме клавиши "Пер.".

2.4.3.5 Для передачи данных нажать повторно клавишу "Пер.". По окончании передачи структуроскоп автоматически перейдет в режим измерений.

2.4.4 Очистка памяти

Запись данных в любую ячейку памяти структуроскопа возможна поверх старой информации. Однако в ряде случаев желательна предварительная очистка памяти. Для этого:

2.4.4.1 Нажать клавишу "**Оч.**". На дисплее появится предупреждающая надпись

2.4.4.2 Для отказа от очистки нажать любую клавишу, кроме клавиши "**O**". Структуроскоп вернется в режим измерений.

2.4.4.3 Для очистки памяти нажать клавишу "**O**". По окончании очистки (примерно 1 минута) структуроскоп перейдет в режим измерений, о чем будет свидетельствовать индикация

З ОПИСАНИЕ ПРОГРАММЫ ПРИЕМА ДАННЫХ КОМПЬЮТЕРОМ ИЗ ПАМЯТИ СТРУКТУРОСКОПА

3.1 Программа позволяет принять данные из памяти структуроскопа по любому из асинхронных портов СОМ1 или СОМ2.

3.2 Описание работы программы приведены в файле "readme.txt".

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

4.1 Обслуживание структуроскопа производится заводским персоналом из подразделений цеха контрольно-измерительных приборов (КИП) или аналогичных.

4.2 Техническое обслуживание структуроскопа состоит из профилактического осмотра, планово-профилактического ремонта, текущего ремонта и калибровки.

4.3 Периодичность профилактических осмотров устанавливается в зависимости от производственных условий, но не реже одного раза в месяц. При профилактическом осмотре проверяются крепление соединительного кабеля, состояние органов управления и лакокрасочных покрытий.

4.4 Планово-профилактический ремонт производится после истечения гарантийного срока и далее не реже одного раза в год. Ремонт включает в себя визуальный осмотр структуроскопа, осмотр внутреннего состояния монтажа, проверку надежности контактных соединений, удаление пыли и грязи. При этом выполняются все виды работ, необходимость которых выявлена при профилактическом осмотре структуроскопа. В случае выхода из строя радиоэлементов структуроскопа они подлежат замене.

4.5 Текущий ремонт производится в ходе эксплуатации структуроскопа. При этом устраняются неисправности, замеченные при профилактическом осмотре, путем замены или восстановления отдельных частей структуроскопа (замена радиоэлементов, восстановление нарушенных связей и т.п.).

4.6 Калибровка структуроскопа осуществляется не реже одного раза в год и после ремонта в соответствии с Методическими указаниями «Структуроскоп вихретоковый ВЭ-26НП. Методика калибровки Иа2.778.013 МУ».

5 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

5.1 Возможные неисправности и способы их устранения приведены в табл.5.1.

Таблица 5.1

Возможная	Вероятная причина	Способ
неисправность		устранения
При включении не	Отсутствует напря-	1) Вставить элемент пи-
светится дисплей.	жение питания.	тания в батарейный от-
		сек при его отсутствии.
		2) Зачистить окислен-
		ные контакты в бата-
		рейном отсеке.
При установке нового	1) Наличие неис-	Найти неисправный
элемента питания го-	правного элемента	элемент и заменить.
рит дисплей разряда	питания.	
батарей.	2) Плохой контакт	Зачистить контакты.
	между элементом и	
	контактами в бата-	
	рейном отсеке.	
Чувствительный эле-	Попадание грязи	Развинтить корпус пре-
мент преобразователя	внутрь корпуса пре-	образователя, выдви-
после снятия его с из-	образователя.	нуть из него стержень с
делия не выступает из		чувствительным эле-
торца корпуса.		ментом и тщательно
		очистить от грязи. До-
		пускается применение
		спирта или бензина Б70.

6 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

6.1 Во время транспортирования и хранения структуроскоп должен быть упакован в ящик из гофрированного картона.

6.2 Транспортирование упакованных структуроскопов может производиться любым видом крытого транспорта (кроме морского) и в отапливаемых отсеках самолетов.

6.3 Структуроскоп в упаковке для транспортирования выдерживает тряску с ускорением до 30 м/c^2 при частоте ударов от 80 до 120 в минуту или 15 000 ударов с тем же ускорением.

6.4 Условия транспортирования:

- температура от минус 50 до плюс 50°С
- относительная влажность до 85% при температуре +25°С

6.5 Упакованные приборы должны храниться на стеллажах в сухом помещении в соответствии с условиями хранения по ГОСТ15150-69. В помещении для хранения не должно быть паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию (условия хранения 1 по ГОСТ15150-69).