ДЕФЕКТОСКОП АКУСТИЧЕСКИЙ АД-64М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Иа5.173.024 РЭ

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ ДЕФЕКТОСКОПА	4
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
3 КОМПЛЕКТНОСТЬ	6
4 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО ДЕФЕКТОСКОПА	7
 4.1 Принцип действия дефектоскопа 4.2 Структурная схема дефектоскопа 4.3 Конструкция дефектоскопа 	7 7 8
5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	11
6 ПОДГОТОВКА ДЕФЕКТОСКОПА К РАБОТЕ И ЕГО НАСТРОЙ	КА 11
 6.1 ПОДКЛЮЧЕНИЕ БЛОКОВ ДЕФЕКТОСКОПА. 6.2 ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ ДЕФЕКТОСКОПА. 6.3 РАБОТА С ДЕФЕКТОСКОПОМ 6.4 РАБОТА С ПАМЯТЬЮ. 6.5 ПЕРЕДАЧА ДАННЫХ В ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР. 	11 12 13 17 20
7 КОНТРОЛЬ ИЗДЕЛИЙ	26
7.1 Общие рекомендации 7.2 Рекомендации по контролю конструкций различного тип 7.3 Работа с автономным питанием 7.4 Контроль изделий	26 IA 27 27 28
8. МЕТОДИКА КАЛИБРОВКИ	29
8.1 Общие положения 8.2 Метрологические характеристики 8.3 Операции калибровки 8.4 Средства калибровки	29 29 30 30
 8.5 УСЛОВИЯ КАЛИБРОВКИ	30 31 <i>31</i> <i>33</i> <i>34</i> 25
9.7 ΟΨΟΓΜΙΕΙΝΙΕ ΡΕЗУЛЬТАТОВ КАЛИБРОВКИ 9. ΤΕΧΗΝΨΕСΚΟΕ ΟΕΩΙVЖИВΔΗИΕ	36
10 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	36
ПРИЛОЖЕНИЕ	37

Настоящее руководство по эксплуатации включает в себя технические характеристики, комплектность, принцип действия и устройство дефектоскопа, инструкцию по эксплуатации (подготовка к работе и настройка дефектоскопа, контроль изделий) и методику калибровки дефектоскопа акустического АД-64М.

1 НАЗНАЧЕНИЕ ДЕФЕКТОСКОПА

1.1 Дефектоскоп акустический АД-64М (далее по тексту – дефектоскоп) предназначен для обнаружения дефектов соединений (преимущественно клеевых) между элементами многослойных конструкций из полимерных материалов и металлов, применяемых в различных сочетаниях, а также расслоений в слоистых пластиках.

Дефектоскоп обнаруживает преимущественно дефекты, расположенные приблизительно параллельно к поверхности ввода колебаний. Дефекты, не имеющие заполненного газом расслоения, не выявляются.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Минимальная площадь выявляемых дефектов при наиболее благоприятных условиях (например, под обшивкой из текстолита толщиной 0,5мм, приклеенной к пенопласту плотностью 43 кг/м³) — 1.2 см²

2.2 Частота следования импульсов возбуждения преобразователя — 10 Гц

2.3 Диапазон частот спектроанализатора — 0,2...8кГц **2.4** Дефектоскоп позволяет:

• запоминать и хранить в памяти для последующего использования параметры настройки для контроля типовых изделий, что исключает использование контрольных образцов для повторных настроек;

• запоминать и хранить в памяти для последующего просмотра и передачи в ПК спектры сигналов дефектных участков;

2.5 Время установки рабочего режима не более, мин — 1

2.6 Время настройки дефектоскопа на бездефектном участке контролируемого изделия, не более, с — 30

2.7 Питание электронного блока дефектоскопа осуществляется:

- от сетевого адаптера питания с выходом 6В 1А
- от 4х аккумуляторов, мА*час 2500

2.8 Продолжительность непрерывной работы от полностью заряженных аккумуляторов, не менее, ч **—** 8 2.9 Габариты, мм: • электронный блок (ДхШхГ) -190x150x70• адаптер питания (ДхШхГ) -100x66x93• преобразователь (ДхШхГ) - 51x30x93 2.10 Масса, не более, кг: -0,9• электронный блок • адаптер питания -1,0-0.4• преобразователь **2.11** Условия эксплуатации по УХЛ 3.1* по ГОСТ 15150-69: • температура окружающего воздуха, °С — от 5 до 40 • относительная влажность при +25°С, не более, % - 98 • атмосферное давление, кПа — от 84,0 до 106,7 2.12 Средний срок службы, лет -22.13 Полный средний срок службы, лет -10

3 КОМПЛЕКТНОСТЬ

Наименование	Количество, шт./экз.
Электронный блок	1
Сетевой блок питания	1
Преобразователь ПС-2	1
Аккумуляторы типа АА	4
Зарядное устройство	1
Наушники*	1
Отвертка	1
Чемодан	1
Сумка для электронного блока	1
Компакт-диск с программным обеспечением*	1
Дефектоскоп акустический. Паспорт Иа5.173.024 ПС	1
Дефектоскоп акустический. Руководство по эксплуатации Иа5.173.024 РЭ	1
Сертификат калибровки дефектоскопа акустического	1

3.1 Комплект поставки дефектоскопа приведён в табл.3.1. Таблица 3.1

* Поставляются по отдельному заказу

4 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО ДЕФЕКТОСКОПА

4.1 Принцип действия дефектоскопа

4.4.1 Метод свободных колебаний основан на ударном возбуждении в контролируемом объекте импульсов свободно затухающих упругих колебаний и анализе их спектров. Признаком дефекта служит изменение спектра по сравнению со спектром в бездефектных зонах изделия. Преобразователь для контроля методом свободных колебаний содержит ударный вибратор и приёмник упругих колебаний. В качестве приёмника используется конденсаторный электретный микрофон.

4.2 Структурная схема дефектоскопа

4.2.1 Структурная схема, поясняющая работу дефектоскопа, приведена на рис.4.1.

Рис.4.1. Структурная схема дефектоскопа

1 — преобразователь, 2 — входной усилитель, 3 — программируемый усилитель, 4 — аналого-цифровой преобразователь, 5 — центральный процессор, 6 — клавиатура, 7 — индикатор, 8 — энергонезависимая память, 9 — модуль Bluetooth для связи с ПК

4.2.2 Краткое описание работы дефектоскопа

Центральный процессор возбуждает вибратор преобразователя, посылая на его магнитную катушку импульсы. В результате преобразователь возбуждает в контролируемом объекте акустические импульсы.

Акустический сигнал от контролируемого изделия принимается микрофоном и преобразуется в электрический сигнал. Полученный сигнал поступает на входной усилитель 2. Центральный процессор при помощи управляемого усилителя 3 масштабирует сигнал до уровня напряжения питания и затем производит выборку 128 измерений при помощи аналого-цифрового преобразователя 4. Полученная выборка преобразуется в спектр.

При настройке на бездефектном участке запоминаются максимальные значения амплитуд каждой гармоники в спектре. Порог для каждой гармоники устанавливается как произведение максимума на коэффициент, лежащий в диапазоне от 1.00 до 2.00 (настраивается путём изменения величины «ПОРОГ» в меню «НАСТРОЙКИ»).

Во время контроля превышение амплитуды какой-либо гармоники над порогом сигнализирует о наличие дефекта, что индицируется на экране дисплея (далее по тексту – экран) дефектоскопа (появляется надпись «ДЕФЕКТ»), на преобразователе (загорается светодиодный индикатор) и в головном телефоне (появляется звуковой сигнал).

4.3 Конструкция дефектоскопа

4.3.1 Электронный блок дефектоскопа выполнен в пластмассовом корпусе. На лицевой панели (рис.4.2) показаны органы управления, индикации, разъёмы преобразователя и малогабаритного телефона.

Рис.4.2 Лицевая панель дефектоскопа

1 — кнопка «ВВЕРХ», 2 — кнопка «ПИТАНИЕ», 3 — кнопка «ВНИЗ», 4 — экран дефектоскопа, 5 — разъём для телефона, 6 — кнопка «ВЛЕВО», 7 — кнопка «МЕНЮ», 8 — кнопка «ВВОД», 9 — кнопка «ВПРАВО», 10 — разъём для преобразователя. **4.3.2** Дефектоскоп комплектуется одним преобразователем с ударным электромагнитным вибратором и микрофонным приёмником упругих колебаний. На верхней крышке преобразователя установлен светодиод, сигнализирующий о наличии в изделии дефекта. Преобразователь соединяется с электронным блоком кабелями длинной около 1,5м. Преобразователь снабжен выключателем электромагнитного вибратора и регулировочным винтом, позволяющим менять, при помощи отвертки, расстояние от исходного (стационарного) положения бойка до поверхности контролируемого объекта, что необходимо при контроле изделий с криволинейными поверхностями. Поворот регулировочного винта по часовой стрелке увеличивает зазор между бойком и контролируемой поверхностью, данное расстояние равно 3мм.

Рис.4.3 Преобразователь (вид сверху)

1 — тумблер включения/выключения преобразователя; 2 – светодиод индикации о дефектах; 3- регулировочный винт

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

5.1 При работе от автономных источников питания дефектоскоп не представляет опасности для обслуживающего персонала.

5.2 При работе от сетевого адаптера питания необходимо соблюдать требования «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей» ПТБ-84.

5.3 К эксплуатации, обслуживанию и ремонту дефектоскопа допускаются лица, изучившие раздел 4, 5, 6 и 7 настоящего руководства по эксплуатации, а также прошедшие инструктаж по технике безопасности и пожарной безопасности при работе с электроустановками.

ВНИМАНИЕ.

Во избежание выхода из строя элементов питания не оставляйте их в аккумуляторном отсеке, если дефектоскоп не используется длительное время.

Работа дефектоскопа допустима только от аккумуляторов типа AA емкость не менее 2500 мА*час.

Установку и замену элементов питания производить только при отключенном питании дефектоскопа.

6 ПОДГОТОВКА ДЕФЕКТОСКОПА К РАБОТЕ И ЕГО НАСТРОЙКА

6.1 Подключение блоков дефектоскопа

6.1.1 При автономном питании установить в электронный блок 4 аккумулятор типа АА. При питании от сети подключить разъем кабеля адаптера питания к разъему, расположенному на задней панели электронного блока.

6.1.2 Подсоединить выбранный преобразователь к разъему, расположенному на передней панели электронного блока дефектоскопа.

6.1.3 При работе от сети включить в сеть адаптер питания.

6.2 Включение и выключение дефектоскопа

6.2.1 Для включения дефектоскопа нажать и удерживать кнопку до появление основного экрана дефектоскопа (далее по тексту — основной экран) (рис.6.1).

Рис.6.1 Экран дефектоскопа

1 — индикатор разряда батареи; 2 — надпись, сигнализирующая об обнаружении дефекта; 3 — спектр сигнала, получаемый при нахождении преобразователя на объекте контроля; 4 – шкала частот в кГц.

После включения электронного блока дефектоскопа необходимо включить преобразователь, переключив тумблер, расположенный на его верхней крышке. Включение преобразователя контролируется по начавшемуся периодическому перемещению ударного элемента.

6.2.3 После окончания работы, разряда аккумулятора (о чём свидетельствует надпись «ЗАРЯДИТЕ АККУМУЛЯТОРЫ») или в любом другом случае необходимо выключить дефектоскоп нажатием и удер-

жанием кнопки 🙋 до пропадания изображения на экране дефектоскопа.

6.3 Работа с дефектоскопом

6.3.1 Работа с дефектоскопом разделена на несколько этапов, которые отражены в названиях пунктов основного меню (рис.6.2).

Для входа в основное меню необходимо однократно нажать кнопку M, находясь в основном экране. Для возврата в основной экран из экрана основного меню необходимо однократно нажать кнопку M.

Рис. 6.2 Экран основного меню

6.3.2 В основном меню выбранная строка подсвечивается горизонтальной полосой (на экране дисплея данная полоса – светлая, на приведенных рисунках данная полоса – черная). Для перемещения (выбора) по пунктам меню использовать кнопки **1**, **.**

6.3.3 Перед началом работы провести настройку дефектоскопа. При нахождении в основном экране кнопкой M войти в основное меню. Кнопками ♠, ➡ выбрать строку «НАСТРОЙКИ». Однократно нажать кнопку ➡. На экране отобразится меню «НАСТРОЙКИ»

(рис. 6.3). Для выхода из меню «НАСТРОЙКИ» в основное меню – нажать кнопку M.

Рис 6.3 Меню настройки

В меню «НАСТРОЙКИ» выбранная строка подсвечивается горизонтальной полосой.

6.3.4 Кнопками [↑], |↓] выбрать строку «ПРОГРАММА». Нажать кнопку [↓]. Кнопками [↑], [↓] установить номер ячейки, в которой будут храниться настройки дефектоскопа. Для выхода из режима установки номера ячейки нажать кнопку [4]. Если дефектоскоп уже настраивался, то после выбора ячейки он будет автоматически загружен соответствующей настройкой. В данном случае можно выходить в основной экран и производить контроль. При включении дефектоскопа в него автоматически загружаются настройки, использовавшиеся до последнего выключения прибора. Если прибор ещё не «УСИЛЕНИЕ» необходимо настроить настраивался по п.6.3.5. «СПЕКТР» по п.6.3.6 и «ПОРОГ» по п.6.3.7.

6.3.5 Установить преобразователь на образец над пороговым дефектом. Тумблером включить преобразователь. Нажатием кнопки M войти в основное меню. Кнопками 1, выбрать строку «НАСТРОЙКИ» и нажать кнопку . В меню «НАСТРОЙКИ» кнопками , выбрать строку «УСИЛЕНИЕ» и нажать кнопку . На экране отобразятся график сигнала и значение коэффициента усиления (рис. 6.4).

Рис. 6.4 Экран регулировки усиления

При нахождении в экране «УСИЛЕНИЕ» и включенном преобразователе с помощью отвертки поворотом винта 3 (рис. 4.3) на корпусе преобразователя можно перемещать график сигнала по горизонтальной оси. Максимум сигнала должен находиться в пределах экрана. Последовательным нажатием на одну из кнопок 🕥 или 💽 отрегулировать усиление до такой величины, чтобы размах сигнала (расстояние от максимума сигнала до минимума) равнялся половине высоты экрана. После настройки усиления нажатием кнопки M вернуться в меню «НАСТРОЙКИ».

6.3.6 Установить преобразователь на бездефектный участок объекта контроля. В меню «НАСТРОЙКИ» выбрать строку «СПЕКТР» и нажать кнопку . На экране отобразится спектр входного сигнала и максимальное значение амплитуды гармоник (рис.6.5).Провести преобразователь в пределах бездефектного участка несколько раз. Нажатием кнопки М выйти в основное меню.

Рис. 6.5 Экран настройки спектра на бездефектном участке

6.3.7 Для настройки порога в меню «НАСТРОЙКИ» выбрать строку «ПОРОГ», нажать кнопку 4 и при помощи кнопок 1 / установить его величину в диапазоне от 1.00 до 2.00. Чем ниже значение величины порога, тем чувствительнее дефектоскоп и тем выше вероятность срабатывания индикации прибора на бездефектном участке. Величина порога в точности равна коэффициенту. умноженному на максимальную амплитуду гармоник на бездефектном участке. Полученное значение используется в дальнейшем для сравнения с текущей амплитудой на контролируемом участке. Превышение амплитуды гармоник порога — обнаружение дефекта. Выйти в основной экран последовательным нажатием кнопок IMI

16 Иа5.173.024 РЭ

6.3.9 Для того, чтобы убедиться в правильности полученных настроек, необходимо до начала контроля и после него проводить проверку дефектоскопа на контрольном образце. Для этого необходимо настроиться на образце (или выбрать ячейку с соответствующей программой по п. 6.3.8) и убедиться в срабатывании и несрабатывании автоматической индикации (звуковой и световой) соответственно при перемещении преобразователя над дефектным и бездефектными участками образца.

6.4 Работа с памятью

6.4.1 Для сохранения спектра сигнала при контроле изделия необходимо установить преобразователь на бездефектном участке объекта контроля. При этом должен быть включен основной экран дефектоскопа (рис 6.1). Включить тумблером преобразователь. Убедиться Провести преобразователь объекту контроля. по индикации в срабатывании при прохождении или нахождении преобразователя над дефектом. При перемещении преобразователя определить по срабатыванию индикации место расположения дефекта. Установить преобразователь над дефектом, нажать кнопку [М], после чего на экране дефектоскопа отобразится основное меню (рис 6.2). В основном меню кнопками **|**↑, **|**↓ выбрать строку «ПАМЯТЬ» и нажать кнопку 🛃. На экране отобразится меню работы с памятью (рис. 6.6).

Рис. 6.6 Меню работы с памятью

6.4.2 В меню работы с памятью для сохранения спектра сигнала кнопками (), () выбрать строку «СОХРАНИТЬ» и нажать кнопку (). На экране появится строка «ЯЧЕЙКА». Кнопками (), () назначить номер ячейки, в которую заносятся результаты контроля. Для сохранения полученного спектра нажать кнопку (). На экране появиться надпись «ЗАПИСЬ ЗАВЕРШЕНА». Нажатием кнопки М вернуться в меню работы с памятью.

6.4.3 Для просмотра записанного спектра по п.6.4.1 в меню работы с памятью кнопками **()**, **()** выбрать строку «ПРОСМОТР». Нажать кнопку **()**. На экране отобразится номер ячейки и график спектра (рис. 6.7).

Рис. 6.7 Экран просмотра

1 — номер ячейки памяти; 2 — гармоники, превышающие порог, 3 – шкала частоты в кГц; 4 — гармоники, не превышающие порог

Гармоники, превышающие и не превышающие порог, получены при нахождении преобразователя в одной и той же точке контролируемого участка с дефектом.

6.5 Передача данных в персональный компьютер

6.5.1 Для передачи в компьютер информации, записанной в память дефектоскопа, необходимо связать дефектоскоп с персональным компьютером (ПК). Для этого – включить дефектоскоп. Подключить к ПК модуль связи Bluetooth. В операционной системе WindowsXP в строке состояния нажать правой кнопкой мыши значок Bluetooth (рис. 6.8)

Рис. 6.8 Меню настройки Bluetooth

В появившемся меню выбрать пункт «Добавить устройство Bluetooth». Далее должно появиться окно выбора подключаемого устройства (рис. 6.9). В нём выбрать устройство, начинающееся со строк BNC4 и нажать кнопку «Далее».

Мастер добавления устройства В	Bluetooth	
Выберите устройство Bluetooth,	которое хотите добавить.	*
ЕлегGу® Связь уже установлена	ВNC4-7922000018DA Новое устройство	
Если устройство, которое вы хотображается, убедитесь, что онуказаниям изготовителя по устанажмите кнопку "Повторить пои	тите добавить, не но включено. Следуйте новке устройства; затем Повтор иск".	ить поиск
	< <u>Н</u> азад Далее >	Отмена

Рис. 6.9 Выбор модуля Bluetooth

В появившемся меню ввести код «0000» и нажать кнопку «Далее» (рис. 6.10). Операционная система подключит модуль и назначит ему номера последовательных портов. Необходимо запомнить номер исходящего порта (рис. 6.11).

Мастер добавления устройства Bluetooth			
Вам нужен ключ доступа для добавления устройства?			
Чтобы получить ответ, обратитесь к разделу "Blueto Если в документации приводится ключ доступа, испо	oth" документации по устройству. опьзуйте его.		
О В <u>ы</u> брать ключ доступа автоматически			
О Использовать ключ доступа из документации:			
Выбрать ключ доступа самостоятельно:	0000		
О Не испол <u>ь</u> зовать ключ доступа			
Необходимо использовать <u>ключ доступа</u> во воех устройство не поддерживает ключ. Рекомендует длиной от 8 до 16 знаков. Чем длиннее ключ дос	случаях, кроме того, когда ся использовать ключ доступа тупа, тем он надежнее.		
<u> </u>	зад Далее > Отмена		

Рис. 6.10 Ввод кода

Мастер добавления устройства Bluetooth				
	Завершение мастера добавления устройства Bluetooth			
	Устройство Bluetooth успешно подключено к компьютеру. Компьютер и устройство могут связываться друг с другом, когда они находятся рядом.			
	Устройству назначены последовательные СОМ-порты.			
	Исходящий СОМ-порт:	COM16		
	Входящий СОМ-порт:	COM17		
	Подробнее о <u>COM-портах Blu</u>	etooth.		
	Для закрытия мастера нажм	иите кнопку "Готово".		
	< <u>Н</u> азад	Готово Отмена		

Рис. 6.11 Назначенные номера портов

6.5.2 Для передачи данных с информацией о спектре сигнала и порогах необходимо запустить на персональном компьютере программу приёма данных (rx.exe), поставляемую на компакт-диске, (рис. 6.12). Выбрать в выпадающем списке номер порта, который назначила система модулю Bluetooth. Нажать кнопку «Приём» и выбрать папку, в которую будут сохранены данные.

Рис. 6.12 Экран программы rx.exe

6.5.3 В дефектоскопе войти в основное меню и при помощи кнопок ↑/ ▶ выбрать пункт меню «СВЯЗЬ», нажать кнопку ↓.

Рис. 6.13 Экран передачи данных в персональный компьютер

На экране отобразится полоса прогресса передачи данных в ПК. Когда полоса полностью заполнится, данные будут переданы в ПК (рис. 6.14).

Для преобразования полученных данных в изображение, которое можно вставить в отчет о контроле используется программа graph.exe, поставляемая на компакт-диске (рис. 6.14).

Рис. 6.14 Окно программы преобразования данных в изображение

Для загрузки данных нажать кнопку «Открыть». Для сохранения полученного изображения нажать кнопку «Сохранить». Изображение сохраняется в формате ВМР.

7 КОНТРОЛЬ ИЗДЕЛИЙ

7.1 Общие рекомендации

7.1.1 Ввиду огромного многообразия многослойных конструкций, в которых используются различные комбинации материалов с резко различающимися свойствами (металлы, пластики, сотовые заполнители и др.), дать здесь детальные указания по контролю конкретных конструкций невозможно. Поэтому ограничимся общими рекомендациями по применению дефектоскопа, имея в виду, что его возможности и чувствительность должны определяться потребителем экспериментально для каждого типа контролируемых конструкций и сочетаний материалов.

7.1.2 Для выбора оптимальных режимов работы, определения чувствительности к дефектам и настройки дефектоскопа используют изготовленные потребителем настоечные образцы с моделями дефектов различных размеров. Эти образцы должны иметь те же основные параметры (устройство конструкций, толщины, материалы слоев и т.п.), что и контролируемые изделия. Длина и ширина образцов могут быть меньше соответствующих размеров контролируемых изделий.

Модели дефектов должны по возможности лучше соответствовать естественным дефектам, в частности, эти модели должны иметь раскрытие в виде заполненного газом зазора не менее 0,05 ... 0,1 мм, так как дефекты без зазора не обнаруживаются. Размеры моделей дефектов выбирают исходя из необходимой чувствительности и возможности дефектоскопа.

7.1.3 Преобразователь, поставляемый в комплекте с прибором, пригоден для контроля широкого диапазона изделий с наружными слоями из почти любых полимерных материалов и металлов, от резины до стали.

Он особенно эффективен для контроля изделий из полимеров с низким модулем упругости. Основные недостатки преобразователя: чувствительность к внешнему шуму и создаваемый им при работе незначительный шум.

7.2 Рекомендации по контролю конструкций различного типа

7.2.1 Двухслойные конструкции, допускающие проверку с обеих сторон, рекомендуется контролировать со стороны слоя, обладающего меньшей жесткостью.

7.2.2 При контроле плоских изделий перпендикулярность оси вибратора к поверхности контролируемого объекта обеспечивается конструкцией преобразователя. Если изделия имеют заметную кривизну, то при сканировании преобразователь следует ориентировать так, чтобы отклонение оси преобразователя от нормали к поверхности изделия не превышало 3 ... 5 градусов.

7.2.3 При контроле изделий с криволинейными поверхностями следует иметь в виду, что энергия удара подвижной системы преобразователя зависит от расстояния между исходным (стационарным) положением бойка и поверхностью объекта. Оптимально значение составляет около 3 мм. (Данное расстояние измеряется штангенглубиномером).

Отклонение в сторону уменьшения или увеличения этого расстояния ухудшает работу ударного вибратора.

При контроле изделий с криволинейными поверхностями расстояние до поверхности удара изменяется. Если его изменение превышает 1 мм, следует, поворачивая винт на крышке преобразователя, передвинуть всю систему вибратора относительно корпуса преобразователя для сохранения расстояния равным 3мм.

7.3 Работа с автономным питанием

7.3.1 При работе с автономным питанием не допускать снижения напряжения аккумуляторов ниже предельного порога (0,9В на один элемент типа AA), так как это ведет к их порче.

О необходимости зарядки аккумуляторов сигнализирует надпись «ЗАРЯДИТЕ АККУМУЛЯТОР» на экране дефектоскопа (при этом электронный блок дефектоскопа перестаёт посылать импульсы возбуждения на преобразователь).

При питании от сети, расположенные в электронном блоке аккумуляторы, **НЕ ПОДЗАРЯЖАЮТСЯ.** Для зарядки аккумуляторов необходимо использовать поставляемое в комплекте зарядное устройство.

7.4 Контроль изделий

7.4.1 Конкретные методики контроля и критерии браковки изделий разрабатываются потребителем.

7.4.2 При работе с изделиями, ранее не контролировавшимися дефектоскопом и требующие его настройки по контрольным образцам, необходимо выполнить действия согласно пп. 6.3.1 ... 6.3.8 настоящего РЭ.

7.4.3 При наличии уже настроенной программы контроля необходимо выбрать ее согласно пп. 6.3.1 ... 6.3.4, 6.3.8 настоящего РЭ.

7.4.4 Находясь в основном экране дефектоскопа следует перемещать работающий преобразователь по контролируемому изделию. Наличие дефектов в изделии отслеживайте по световой индикации на преобразователе, по надписи «ДЕФЕКТ» на экране дефектоскопа и на основании сигнала в телефоне.

7.4.5 Спектр сигнала над дефектом можно занести в память дефектоскопа для дальнейшего просмотра и передачи в персональный компьютер. Для этого выполнить п. 6.4.1 настоящего РЭ.

8. МЕТОДИКА КАЛИБРОВКИ

8.1 Общие положения

8.1.1 Настоящая методика калибровки распространяется на дефектоскоп акустический АД-64М (далее по тексту — дефектоскоп) и устанавливает методы и средства его первичной и периодической калибровок.

Первичную калибровку дефектоскопа проводят после его изготовления.

Периодическую калибровку дефектоскопа проводят не реже одного раза в год.

При проведении операций калибровки необходимо пользоваться настоящим руководством по эксплуатации на дефектоскоп.

8.2 Метрологические характеристики

8.2.1 Проверяемые метрологические характеристики дефектоскопа, их нормированные значения указаны в таблице 8.1.

		Гаолица 8.1
Проверяемые метрологические характеристики	Нормиро- ванное значение	Номер пункта методики калибровки
Время установления рабочего режима	1 мин	8.6.2.2
Минимальная площадь обнаруживае- мого дефекта в образце из пенопласта с плотностью 43 кг/м ³ толщиной 40 мм под обшивкой из текстолита толщиной 0,5 мм	1,2 см ²	8.6.3
Одновременное срабатывание звуковой и световой индикации и появление на основном экране надписи «ДЕФЕКТ»		8.6.3.12

8.3 Операции калибровки

8.3.1 При проведении калибровки должны выполняться операции, указанные в таблице 8.2.

Таблица 8.2

Наименование	Номер пункта	Обязательность проверки операции при калибровке		
операции		первичной	периодической	
Внешний осмотр	8.6.1.38.6.1.5	Дa	Дa	
Опробование	8.6.2	Дa	Дa	
Проверка минимально обнаруживаемого дефекта	8.6.3.12	Да	Дa	
Время установления рабочего режима	8.6.3.12	Дa	Дa	
Проверка включения световой и звуковой сигнализации		Дa	Да	

8.4 Средства калибровки

8.4.1 При проведении калибровки необходимо применять образец с моделью дефекта площадью 1,2 см² из пенопласта плотностью 43 кг/мм³ с обшивкой из текстолита толщиной 0,5 мм.

8.4.2 Погрешность измерения геометрических размеров дефекта образца – 0,5 мм, толщины обшивки – 0,05 мм.

8.5 Условия калибровки

8.5.1 При проведении калибровки должны соблюдаться следующие условия:

• температура окружающего воздуха, °С	- 1925	
• относительная влажность воздуха, %	- 80	
при температуре, °С	- 25	
• атмосферное давление, кПа	- 84,0106	7
 напряжение питающей сети, В 	- 215 225	
• частота питающей сети, Гц	- 4951	

Перед проведением калибровки распаковать дефектоскоп и средства калибровки и выдержать их в условиях по п. 8.5.1 не менее 2 часов.

При проведении калибровки должны соблюдаться требования эксплуатационной документации на дефектоскоп.

8.6 Проведения калибровки

8.6.1 Внешний осмотр

8.6.1.1 При внешнем осмотре должно быть установлено соответствие дефектоскопа следующим требованиям:

- комплектность должна соответствовать разделу 3 настоящего РЭ;
- наличие маркировки и пломб.

8.6.1.2 На передней панели корпуса электронного блока дефектоскопа должны быть отчетливо нанесены обозначения, соответствующие таблице 8.3.

Наименование	Обозначение
Товарный знак предприятия- изготовителя	Ô
Тип дефектоскопа	АД-64М
Название дефектоскопа	ДЕФЕКТОСКОП АКУСТИЧЕСКИЙ
Разъём телефона	Û
Разъём преобразователя	\bigcirc
Кнопка «МЕНЮ»	Μ
Кнопка «ВВОДА»	
Кнопка с изображением стрелки вверх	
Кнопка с изображением стрелки вниз	
Кнопка с изображением стрелки влево	
Кнопка с изображением стрелки вправо	
Кнопка «ПИТАНИЕ»	Ø

Способ нанесения обозначений на переднюю панель устанавливается предприятием-изготовителем дефектоскопа.

8.6.1.3 На нижней стенке корпуса электронного блока дефектоскопа должна быть расположена табличка, на которой отчетливо нанесены обозначения, соответствующие таблице 8.4.

Таблица 8.4

Наименование	Обозначение
Товарный знак предприятия- изготовителя	®
Сокращенное название предприятия-изготовителя	ЗАО «НИИИН МНПО «СПЕКТР»
Знак добровольной сертификации	\mathbf{x}
Тип дефектоскопа	АД-64М
Заводской номер	N₂
Дата выпуска	Месяц, год
Страна-изготовитель	СДЕЛАНО В РОССИИ

Способ изготовления таблички устанавливается предприятиемизготовителем дефектоскопа.

8.6.1.4 Дефектоскоп не должен иметь механических повреждений, забоин, вмятин.

8.6.1.5 Все органы управления и внешние разъемные соединения должны быть прочно и без перекосов закреплены и обеспечивать надежность фиксации.

8.6.2 Опробование

8.6.2.1 Подготовить дефектоскоп к работе в соответствии с пп. 6.2 настоящего РЭ.

8.6.2.2 Через 1 минуту после включения дефектоскопа по п. 8.6.2.1 нажать кнопку M. Переключение дефектоскопа кнопкой M в основное меню означает, что установлен рабочий режим дефектоскопа.

8.6.2.3 При невыполнении любого требования по пп. 8.6.2.1, 8.6.2.2 дефектоскоп калибровки не подлежит.

8.6.3 Проверка обнаруживаемых дефектов

Проверка выявляемости порогового дефекта в виде отверстия площадью 1,2 см² в блоке из пенопласта толщиной 40 мм и плотностью 43 кг/м² с обшивкой из текстолита толщиной 0,5 мм, проводить преобразователем ПС-2. Для этого:

8.6.3.1 Стандартный образец СО-3 (Иа5.170.110) расположить на массивном основании, например на стальной плите 250x150x5 мм.

8.6.3.2 Подключить разъем адаптера питания к разъему на задней стороне электронного блока. Подключить сетевой адаптер питания к сети 200B/50Гц.

8.6.3.3 Подключить преобразователь ПС-2 к разъему на электронном блоке.

8.6.3.4 Подключить телефон к разъему **н**а передней панели электронного блока.

8.6.3.5 Включить дефектоскоп как описано в п. 6.2.1.

8.6.3.6 Последовательно нажать кнопки [М], [4], [4], [4].

8.6.3.7 Кнопками **(↑)**, **↓** установить «ПОРОГ» равным 1,40.

8.6.3.8 Последовательным нажатием кнопок ↓, ↓, ↓ войти в пункте меню «УСИЛЕНИЕ».

8.6.3.10 Установить преобразователь ПС-2 над бездефектным местом. Последовательным нажатием кнопок , войти в меню «СПЕКТР». Необходимо перемещать преобразователь по всем бездефектным участкам образца. Последовательным двукратным нажатием на кнопку ыйти в основной экран.

8.6.3.11 Перемещать преобразователь по всем бездефектным участкам образца. При срабатывании индикации о дефекте повторить операции по пп. 8.6.3.8 ... 8.6.3.10.

Настройка на бездефектных участках выполнена правильно, если ни на одном из них не происходит срабатывания индикации о дефекте.

8.6.3.12 Следует продолжить перемещать преобразователь по поверхности образца, фиксируя одновременное срабатывание индикации о дефекте (надпись «ДЕФЕКТ» на экране, звуковой сигнал в наушниках малогабаритного телефона, загорание светодиода на преобразователе) при расположении преобразователя над дефектом.

8.6.3.13 Операции по пп. 8.6.3.11...8.6.3.12 провести не менее трех раз.

Дефектоскоп считается прошедшим калибровку, если при соблюдении требований п. 8.6.3.11 во всех случаях при прохождении преобразователя над дефектом происходит одновременное срабатывание индикации о дефекте по п. 8.6.3.12 при выполнении операций по п. 8.6.3.13.

8.6.4.14 Дефектоскоп, не прошедший калибровку по любому из пунктов настоящей методики, к применению не допускается.

8.7 Оформление результатов калибровки

8.7.1 Результаты калибровки дефектоскопа вносятся в протокол, форма которого приведена в приложении.

8.7.2 На дефектоскоп, признанный годным при первичной или периодической калибровках, выдается сертификат установленной формы.

8.7.3 Дефектоскопы, не удовлетворяющие техническим характеристикам Иа5.173.024 ПС, к применению не допускаются.

9. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9.1 Техническое обслуживание дефектоскопа проводится персоналом потребителя из подразделения службы контрольно-измерительной аппаратуры (КИП) или аналогичных, подробно изучивших принцип действия, конструкцию и устройство дефектоскопа.

9.2 Техническое обслуживание включает в себя профилактический осмотр дефектоскопа.

9.3 При профилактическом осмотре проверяется состояние и надежность крепления органов управления, соединительных кабелей и преобразователя. Осмотр проводится перед началом каждой смены, с целью установления и устранения неисправности.

10. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

10.1 Транспортирование упакованных дефектоскопов должно производиться любым видом крытого транспорта (кроме морского) и в отсеках самолетов.

Условия транспортировки:

- температура, °С от минус 30 до +40;
- относительная влажность

при температуре +25°С, % — 85%.

10.2 Упакованные дефектоскопы без аккумуляторов должны храниться на стеллажах в сухом помещении в соответствии с условиями хранения 1 по ГОСТ 15150-69. В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Приложение

протокол

калибровки дефектоскопа акустического АД-64М

«___»____20 г.

Изготовлен	
Принадлежит_	
Дата выпуска	

Результаты калибровки

Результаты калибровки дефектоскопа акустического АД-64М с преобразователем, входящим в комплект поставки, представлены в таблице:

Тип	Площадь	Результаты калибровки			ſ
преобразо	дефекта	Срабатывание сигнализации			Годен**
Ватели		A_1^*	A_2^*	A ₃ *	
ПС-2	800 мм ²				

*(+) — сигнализация срабатывает при прохождении преобразователя над дефектом.

*(-) — сигнализация не срабатывает при прохождении преобразователя над дефектом.

**Годен — сигнализация срабатывает во всех случаях при нахождении преобразователя над дефектом.

Если сигнализация не срабатывает при прохождении преобразователя над дефектом, хотя бы один раз — дефектоскоп не проходит калибровку.

Заключение

Дефектоскоп акустический АД-64М заводской №____ (не) прошел калибровку и (не) допускается к применению по назначению.

Дата: «___» ____20 г.

м.ш. Калибровщик _____

Иа5.173.024 РЭ 37