

Пьезорезистивный ОЕМ Сенсор Давления

Абсолютное, относительное, дифференциальное давления

Серия 9 является самым экономичным решением для диапазонов от 100 мбар до 200 бар. Стандартное исполнение поставляется с контактными пинами (проводные контакты только по запросу), серийный номер не гравируется на сенсоре.

В качестве сенсора давления выступает высокочувствительный кремниевый чип. Чип защищен от повреждений корпусом из нержавеющей стали с концентрической волнистой мембраной. Корпус наполнен силиконовым маслом для передачи давления от мембраны к чувствительному элементу.

Вся металлическая часть, которая контактирует со средой выполнена из нержавеющей стали 316 L. Используется сварная вакуумноплотная конструкция. Пины для подключения позволяют монтировать сенсор сразу на РСВ или могут быть использованы для подключения проводов.

Основные применения: Измерение высоты над уровнем моря, авиационная электроника, метеорология, сервоуправление, робототехника, гидравлика, гигиеническое и фармокологическое оборудование, шахты, оборудование впрыска...

Крепкий, Маленькие габариты, Легкий вес

Пьезорезистивный чип погружен на подложке в силиконовое масло, которая приваривается в корпус из нержавеющей стали 316L. Диаметр 19 мм; Высота 5 мм; Вес 8 грамм.

Высокая чувствительность

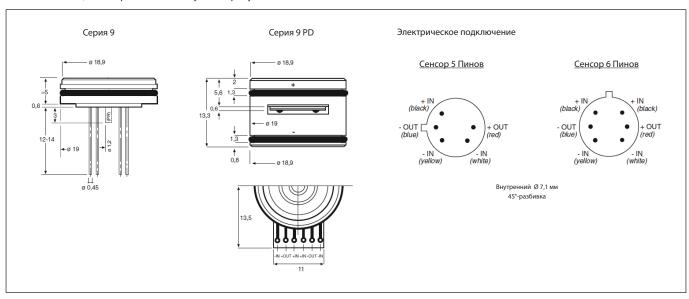
Номинальный сигнал 200 mV получается при токовом питании 1 mA, для стандартных диапазонов более 2 бар.

Диапазоны от 0,1 до 200 бар

Абсолютное, относительное электронно, дифференциальное, барометрическое, относительное и дифференциальное.

Качество

Абсолютно каждый сенсор давления проходит полноценные испытания для тестирования характеристик по давлению и по температуре, сенсор поставляется с индивидуальным сертификатом калибровки со всеми результатами. Возможны специальные тесты по требованию заказчика.


Серия 9 может поставляться с очень тонкой, приваренной лазером мембраной (см. спецификацию Серия 3 L - 10 L). Прогрессивная новая технология лазерной сварки не оставляет трещин и улучшает коррозионостойкость мембраны, и попрежнему отвечает всем параметрам по стабильности, за которые KELLER получил мировую известность.

Серия 9

Серия 9 PD

Subject to alterations 02/0

 KELLER AG für Druckmesstechnik
 St. Gallerstrasse 119
 CH-8404 Winterthur
 Tel. +41 (0)52 - 235 25 25
 Fax +41 (0)52 - 235 25 00

 KELLER Ges. für Druckmesstechnik mbH
 Schwarzwaldstrasse 17
 D-79798 Jestetten
 Tel. +49 (0)7745 - 9214 - 0
 Fax +49 (0)7745 - 9214 - 60

Companies approved to ISO 9001 www.keller-druck.com

KELLER

Спецификация	Исполение I = 1 mA Диапазоны давлений (ВПИ) и давление перегрузки Бар. Выходной сигнал в mV.														
PR-9	-1	-0,5	-0,2	-0,1	0,1	0,2	0,5	1	2	5	10	20			
PD-9					0,1	0,2	0,5	1	2	5	10	20			
PAA-9					0,1	0,2	0,5	1	2	5	10	20			
PA-9								1	2	5	10	20	50	100	200
Выходной сигнал тип.*	100	60	30	15	15	30	60	100	140	200	225	225	225	225	225
Давление перегрузки	-1	-1	-1	-1	2,5	2,5	2,5	3	4	7	15	30	100	200	300
PD, отрицательное давление пере	егрузки -				1	1	1	1	2	3	5	5			
PD, Давление в линии	≤ 100 бар														
PR: Относ. Ноль при атмосферном давлении	РАА: Абсолютно	ое. Ноль	в вакуум	PA: (Этнос. эле	ектронно	. Ноль п	ри атм. д	цавлении (в день	калиброі	вки) Р	D: Диффе	еренц. *	± 40%
Сопротивление моста @ 25 °C	Ω	3500)		± 20	%			Пример	серти	іфиката				926
	Ω mA) миналь	ьный		% А (см. пр	имечани	1e)	Пример PA-9/10		іфиката 1336.2 ^(а)				926
Ток питания				ьный			имечани	1e)	PA-9/10	бар/8 	1336.2 ^(a)				58/14
Ток питания	mA	1 но 100	миналь		5 m/	А (см. пр			PA-9/10 (b)Temp [°C]	бар/8 	1336.2 ^(a) ^(c) Zero [mV]	^(d) -1([n	 000 nV]	(e) Com	58/14 p ^(f) dZe /] [m
Ток питания Изоляция @ 500 VCC Рабочие температуры	mA MΩ °C	1 но 100 -30	миналь .100		5 m <i>A</i>	A (см. пр) (опция,	для Ø ≥1		PA-9/10 (b)Temp [°C] -8.9	бар/8 	1336.2 ^(a) 	^(d) -1([n	 000 nV] 7.9	(e) Com [m\ 0.	58/14 p ^(f) dZe '] [m 3 -(
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1)	mA MΩ °C °C	1 но 100 -30	миналь .100 0 (3 L5		5 m <i>A</i> 55150 -10	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10 	бар/8 	1336.2 ^(a) 	(d) -1([n - -	 000 nV] 7.9 7.9 7.7	(e) Com [m\ 0. 0.	58/14 p ^(f) dZe /] [m 3 -(3 -(
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения	mA MΩ °C °C °C	1 но 100 -30 050 -40	миналь .100 0 (3 L5		5 m <i>A</i> 55150 -10	A (см. пр) (опция,	для Ø ≥1 .10 L)		PA-9/10 (b) Temp [°C] -8.9 0.6 25.6 49.8	бар/8 	(c) Zero [mV] -10.9 -11.0 -11.1 -11.3	(d) -1([n - - -	7.9 7.7 7.7 7.7	(e) Com [m\ 0. 0. 0.	58/14 p (f) dZe /] [m 3 3 5 (8
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz)	mA MΩ °C °C	1 но 100 -30 050 -40 20	.100 0 (3 L5	- L)	5 m <i>A</i> 55150 -10	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10 	бар/8 	1336.2 ^(a) 	(d) -1([n - - -	 000 nV] 7.9 7.9 7.7	(e) Com [m\ 0. 0.	58/14 p (f) dZe /] [m 3 -(3 -(5 () 8 ()
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz)	mA MΩ °C °C °C	1 но 100 -30 050 -40 20	миналь .100 0 (3 L5	- L)	5 m <i>A</i> 55150 -10	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		(b) Temp [°C] -8.9 0.6 25.6 49.8 79.5	бар/8 	(c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6	(d) -1([n - - - - -) kOhm(7.9 7.9 7.7 7.7 7.7 7.5	(e) Com [mV 0. 0. 0. 1.	58/14 p (f) dZe r] [m 3 -(3 -(5 (8 (1 (
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz)	mA MΩ °C °C °C g	1 но 100 -30 050 -40 20	.100 0 (3 L5	- L)	5 m <i>A</i> 55150 -10	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10	бар/8 	(c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6	(d) -1([n - - - - - - -) kOhm (d)	7.9 7.9 7.7 7.5 7.5 7.2	(e) Com [mV 0. 0. 0. 1. R4 = P_a	58/14 p (f) dZe /] [m 3 -(3 -(5 (8 (
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон ⁽¹⁾ Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C)	mA MΩ °C °C °C g циклы	1 но 100 -30 050 -40 20 >100	.100 0 (3 L5	- L)	5 m/ 55150 -10 -60	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		(b) Temp [°C] -8.9 0.6 25.6 49.8 79.5 	бар/8 	(c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6 -11.1 -11.8 -11.6 -11.1 -11.8 -11.6 -11.1 -11.8 -11.6 -11.6 -11.6 -11.6 -11.6 -11.8 -11.6 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.6 -11.8 -11.	(d) -1([n] - - - - - - 0 kOhm (h) NV (h) 3 mV/6a	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [mV 0. 0. 0. 1. R4 = P_a 0 mA ^(j)	58/14 p (*) dZ6 p (*) dZ6 p (*) dZ6 33 5 8 8 1 1
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C)	mA MΩ °C °C °C g циклы	1 но 100 -30 050 -40 20 >100 Нерж.	.100 0 (3 L5 .100 О х 10 ⁶ [- 1И AISI 31	5 mA 55150 -10 -60	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		(b) Temp [°C] -8.9 0.6 25.6 49.8 79.5 COMP ZERO SENS SENS LIN	бар/8 	1336.2 (a) 1336.2 (a) (c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6 R2 = 1000 0.5 r 18.0 72.1	(d) -1([n - - - - 0 kOhm (a nV (b) 3 mV/6a 2 mV/6a	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\ 0. 0. 0. 1. R4 = P_a 0 mA (J) 0 mA (J)	p (**) dZe (**) dZe (**) (**) dZe (**) (**) dZe (**) (**) dZe (**)
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C) Корпус и мембрана	mA MΩ °C °C °C g циклы	1 но 100 -30 05(-40 20 >100 Нерж.	.100 0 (3 L5 .100 О х 10 ⁶ Г	- ПИ AISI 31	5 mA 55150 -1060	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10 "Temp "C -8.9 0.6 25.6 49.8 79.5	бар/8 [р] 00	1336.2 (a) 1336.2 (a) (c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6 R2 = 1000 0.5 r 18.0 72.1	(d) -1([n - - - - - - - - - - - - - - - - - -	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\] 0. 0. 0. 1. R4 = P_a 0 mA (ii) 0 mA (iii) 1. (8B Π/II) 0.00	58/14 pp (*) dZi y'] [n 3 3 - 5 5 8 1 1
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C) Корпус и мембрана Уплотнительное кольцо Масло наполнения	mA MΩ °C °C °C g циклы	1 но 100 -30 050 -40 20 >100 Нерж. Витон ⁶	.100 0 (3 L5 .100 0 x 10 ⁶ Г сталь, , Ø 17 оновое	- ПИ AISI 31 7 x 1 м масло	5 m.4 55150 -10 -60	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10	бар/8 	1336.2 (a) 1336.2 (a) 1336.2 (a) 1336.2 (a) 1336.2 (a) 1436.2 (a)	(d) -10 [n - - - - - - - - - - - - - - - - - -	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\ 0. 0. 0. 1. R4 = P_a 0 mA ^(j) 0 mA ^(j) 1. (βΒΠΙΙ) 0.000 0.31	58/14 p (*) dZ: /i
Сопротивление моста @ 25 °C Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C) Корпус и мембрана Уплотнительное кольцо Масло наполнения Вес	mA MΩ °C °C °C g циклы	1 но 100 -3050 -40 20 >100 Нерж. Витон ⁴ Силикс 8 г (РА	.100 0 (3 L5 .100 О x 10 ⁶ Г сталь, , оновое /РАА/Р	- ПИ AISI 31 7 x 1 м масло R), 15 I	5 m.4 55150 -10 -60	(см. пр (опция, 80 (6 L	для Ø ≥1 .10 L)		PA-9/10 (b) Temp [°C] -8.9 0.6 49.8 79.5 COMP ZERO SENS LIN (c) [6a 0.00 5.00 10.00	p] 000 000	(c) Zero [mV] -11.0 -11.1 -11.3 -11.6 -11.0 -11.1 -11.3 -11.6 -11.0 -11.1 -11.3 -11.6 -11.0 -11.1 -11.3 -11.6 -11.0 -11.1 -11.3 -11.6 -11.0 -11.	(d) -1([n - - - 0) kOhm (e nV (h) 3 mV/6a 2 mV/6a [mV] 0.0 90.7 79.7	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\] 0. 0. 0. 1. R4 = P_a 0 mA (ii) 0 mA (iii) 1. (8B Π/II) 0.00	58/14 pp (*) dZ r] [r 3 3
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C) Корпус и мембрана Уплотнительное кольцо Масло наполнения Вес Нечувствительность к изм. объема	mA MΩ °C °C g циклы	1 но 100 -30 050 -40 20 >100 Нерж. Витон ⁶ Силико 8 г (РА < 0,1 м	.100 0 (3 L5 .100 О х 10 ⁶ Г сталь, сталь, оновое /РАА/Рімм³ / ВП	- ПИ AISI 31 7 х 1 м масло R), 15 г	5 mA 55150 -1060	А (см. пр) (опция, 80 (6 L 150 (оп	для Ø ≥1 .10 L) ция)		PA-9/10 (b) Temp [°C] -8.9 0.6 25.6 49.8 79.5 COMP ZERO SENS SENS LIN (k) [6.0 0.00 10.00 Long Ter	p] 00 00 00	(c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6 -12.1 -10.5 r 18.0 72.1 bbility Ok (c)	(d) -1([n - - - 0) kOhm (e nV (h) 3 mV/6a 2 mV/6a [mV] 0.0 90.7 79.7	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\ 0. 0. 0. 1. R4 = P_a 0 mA ^(j) 0 mA ^(j) 1. (βΒΠΙΙ) 0.000 0.31	58/14 pp (*) dZ r] [r 3 3
Ток питания Изоляция @ 500 VCC Рабочие температуры Компенсированный диапазон (1) Температура хранения Вибрации (205000 Hz) Наработка на отказ (ПИ @ 25 °C) Корпус и мембрана Уплотнительное кольцо Масло наполнения	mA MΩ °C °C °C g циклы	1 но 100 -30 050 -40 20 >100 Нерж. Витон ⁶ Силико 8 г (РА < 0,1 м	.100 0 (3 L5 .100 О х 10 ⁶ Г сталь, сталь, оновое /РАА/Рімм³ / ВП	- ПИ AISI 31 7 х 1 м масло R), 15 г И Ø 0,1 м	55150 -10 -60 6 L M	А (см. пр) (опция, 80 (6 L 150 (оп	для Ø ≥1 .10 L) ция)		PA-9/10 (b) Temp [°C] -8.9 0.6 49.8 79.5 COMP ZERO SENS LIN (c) [6a 0.00 5.00 10.00	p] 00 00 00 Volt Olt O	1336.2 (a) (c) Zero [mV] -10.9 -11.0 -11.1 -11.3 -11.6 R2 = 1000 0,5 r 18.0 72.1	(d) -1([n - - - 0) kOhm (e nV (h) 3 mV/6a 2 mV/6a [mV] 0.0 90.7 79.7	7.9 7.9 7.7 7.5 7.2 p at 1.00 p at 4.00	(e) Com [m\ 0. 0. 0. 1. R4 = P_a 0 mA ^(j) 0 mA ^(j) 1. (βΒΠΙΙ) 0.000 0.31	58/14 pp (*) dZ r] [r 3 3

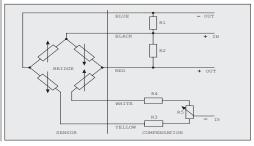
Точность(2)	%ВПИ	0,5 тип. ⁽¹⁾	1 макс.			
Смещение при 25 °C	mV	$<$ 5 mV (компенсируется с R5 - 20 $\Omega^{_{(3)}}$)				
Температурная погрешность		050 °C	-1080 °C	-55…150 ℃		
– Ноль	mV / °C	< 0,025	< 0,05	< 0,075		
– Чувствительность	%/°C	< 0,02	< 0,05	< 0,07		
Долговременная стабильность ти	ıп. mV	0,5	0,75	1,25		
Влияние давления в линии	mV/бар	< 0,0125 (PD	9)			
Частота (резонанс)	kHz	> 30				

- Другие по запросу.
- Включая Линейность, Гистерезис, Воспроизводимость. Линейность рассчитывается как лучшая прямая через ноль. Примечание: В основном, точность и перегрузки улучшаются до 2-4 раз, если сенсор используется в диапазоне 0...50 %ВПИ
- Дополнительная компенсация, потенциометр не поставляется.

Опции:

- Платиновая- или мембрана из Хастеллоя С-276. Полная конструкция из Хастеллоя С-276
- Плоская мембрана
- Масло для низких температур. Фторированное масло. Оливковое масло
- Специальные характеристики: Линейность, Давления перегрузки, низкий темп.коэф. ТС Специальные тесты
- Все диапазоны внутри 0,1 и 200 бар
- Другие температурные диапазоны
- Встроенная РСВ

Каждый сенсор поставляется с сертификатом, содержащим:


- Тип (РА-9) и диапазон (10 бар) сенсора

- Імп (РА-9) и диапазон (10 бар) сенсора Температурные тесты Нескомпенсированный ноль в mV Отклонение нуля, в mV, с сопротивлением (270 kΩ) (голько для заводских рассчетов) Отклонение нуля, в mV, с рассч. компенасационными резисторами Темп. отклонение нуля, в mV, с компенс. резисторами Значения компенсационным резисторов R1 / R2 и R3 / R4 Отклонение с компенсационными резисторами R1 / R2 и R3 / R4 (настройка нуля с помощью R5 потенциометра)
- (настроика нуля с помощью къ потенциометра)
 Окружающее давление, референс для абс. сенсоров < 20 бар
 Чувствительность сенсора давления
 Давление в точках, где проводились испытания
 Выходной сигнал в измерительных точках
 Линейность (лучшая прямая линия через ноль)
 Линейность (лучшая прямая линия)

- Результаты по долговременной стабильности
- Номер кремниевого чипа (по запросу)
 Тест напряжения изоляции
 Ток возбуждения (постоянный ток)
 Дата проведения калибровки -----Обо

Примечания:

- Приведенная спецификация для постоянного питания по току. Сенсор стоит запитывать от 0,5 до 5 mA. Сигнал сенсора пропорционален току
- питания. Если использовать для доп. температурных диапазонов, температурные коэфф. должны быть < 50 ppm/°C. Сенсор и резистор могут быть уязвимы к

Subject to alterations

KELLER AG für Druckmesstechnik St. Gallerstrasse 119 CH-8404 Winterthur Tel. +41 (0)52 - 235 25 25 Fax +41 (0)52 - 235 25 00 Tel. +49 (0)7745 - 9214 - 0 KELLER Ges. für Druckmesstechnik mbH Schwarzwaldstrasse 17 D-79798 Jestetten Fax +49 (0)7745 - 9214 - 60

Companies approved to ISO 9001 www.keller-druck.com