

Руководство по эксплуатации

TR200

ПОРТАТИВНЫЙ ИЗМЕРИТЕЛЬ ШЕРОХОВАТОСТИ

СОДЕРЖАНИЕ

1 ОБЗОР	1
1.1 Принцип измерений	1
1.2 Стандартный комплект поставки	1
1.3 НАЗВАНИЕ КАЖДОЙ ЧАСТИ ПРИБОРА	2
1.4 Основной способ соединения	3
1.4.1 Подсоединение и отсоединение датчика	3
1.4.2 Заряоный олок и заряока аккумуляторных оатарей	3
2 ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ	5
2.1 ПОДГОТОВКА К ИЗМЕРЕНИЯМ	5
2.2 Базовый режим измерений	5
	8
2.3.1 Базовая олина 2.2.2 Плине очении	8
2.3.2 Dividentia	0
2.3.4 Пиапазон	9
2.3.5 Фильтр	9
2.3.6 Параметр шероховатости	9
2.4 Системные установки	10
2.4.1 Язык	10
2.4.2 Единицы измерения	10
2.4.3 Дисплей	11
	11
2.5.1 Печапь 2.5.2 Перециный профиль	11
2.5.2 Первичный профиль 2.5.3 Попожение пера	12
2.5.4 Калибровка	13
2.6 Связь с персональным компьютером	13
3 ДОПОЛНИТЕЛЬНЫЕ ВСПОМОГАТЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ И ИХ	
ИСПОЛЬЗОВАНИЕ	14
3.1 РЕГУЛИРУЕМАЯ ПОДСТАВКА И ЧЕХОЛ ДЛЯ ДАТЧИКА	14
3.2 ИЗМЕРИТЕЛЬНАЯ СТОЙКА	15
3.3 Удлинительный стержень	16
3.4 Соединительный стержень магнитной измерительной плиты	16
3.5 ДАТЧИК ДЛЯ КРИВОЛИНЕИНОИ ПОВЕРХНОСТИ	16
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	17
4.1 Датчик	17
4.2 ПАРАМЕТРЫ ПЕРЕМЕЩЕНИЯ	17
4.3 ПОГРЕШНОСТЬ	17
	18
	10
	18
4.8 Длина оценки	18
4.9 ПАРАМЕТР ШЕРОХОВАТОСТИ И ДИАПАЗОН ОТОБРАЖЕНИЯ	18
4.10 Диапазон измерений и дискретность	18
4.11 ПИТАНИЕ	19
4.12 ДИАПАЗОН ТЕМПЕРАТУРЫ / ВЛАЖНОСТИ	19
	19
	19 10
	10

	3
5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	19
5.1 Диагностирование неисправностей5.2 Информация о неисправностях	20 20
6 ВОЗВРАТ В ИСХОДНОЕ СОСТОЯНИЕ	20
7 СПРАВОЧНЫЕ МАТЕРИАЛЫ	21
7.1 ПРОФИЛЬ И ФИЛЬТР	21
7.1.1 Профиль	21
7.1.2 Фильтр	21
7.2 Средняя линия	21
7.3 БАЗОВАЯ ДЛИНА	21
7.3.1 RC фильтр	21
7.3.2 PC-RC фильтр 7.2.2 фильтер Ганада	22
7.3.3 Ψυποπριαγεία 7.3.4 D. P. Πρανού εροφυεί	22
7.3.4 <i>D-Г Прямои профиль</i> 7.4 Определения параметрор шерохоратости для присора ТР200	22
	22
	22
7.4.3 R ₋ Высота неровностей профиля по десяти точкам	23
7.4.4 R _v (ISO) Наибольшая высота профиля	23
7.4.5 R, (DIN) Наибольшая высота профиля	23
7.4.6 R, Общая высота неровностей	23
7.4.7 R _n Высота наибольшего выступа профиля	24
7.4.8 R m Глубина наибольшей впадины профиля	24
7.4.9 S _m Средний шаг неровностей профиля	24
7.4.10 S Средний шаг местных выступов профиля	24
7.4.11 t _p Относительная опорная длина профиля	24
7.4.12 S _k Асимметрия профиля	25
7.4.13 R3z Высота неровностей по трём максимальным значениям	25

1 Обзор

Портативный измеритель шероховатости TR200 – новая продукция, разработанная компанией Time Group Inc. Измеритель предназначен для работы в условиях производства и может быть использован для измерения шероховатости поверхности различных машиностроительных деталей. Измеритель производит расчёт параметров шероховатости в соответствии с выбранной методикой и чётко отображает на жидкокристаллическом экране график профиля и все измеренные параметры.

Характеристики:

- Измерение многих параметров: R_a, R_z, R_y, R_q, R_p, R_m, R_t, R_{3z}, R_{max}, S_k, S, S_m, t_p;
- Прецизионный индукционный датчик;
- Четыре способа фильтрации RC, PC-RC, GAUSS и D-P;
- Совместим с четырьмя стандартами: ISO (Международная организация по стандартиза ции), DIN (Германский институт стандартов), ANSI (Американский национальный институт стандартов) и JIS (Японский промышленный стандарт);
- Точечный жидкокристаллический дисплей матричного типа 128 х 64, отображающий все параметры и графики;
- Микросхема цифровой обработки сигналов, используемая для управления и обработки данных, потребляет мало энергии и отличается высоким быстродействием;
- Встроенная литиевая аккумуляторная батарея большой емкости без эффекта памяти обеспечивает работу без подзарядки в течение 20 часов;
- Комплексное конструирование механической и электрической частей измерителя позволило создать легкий малогабаритный прибор, удобный в использовании;
- Для распечатки всех параметров и графиков, к измерителю можно подключать принтер TIME TA220S;
- Встроенный стандартный интерфейс RS232 делает возможным связь с персональным компьютером;
- Предусмотрены автоматическое отключение, память и экранные рекомендации;
- Предоставляются различные вспомогательные приспособления: датчик для криволи нейной поверхности, измерительная стойка, чехол для датчика, регулируемая подставка и удлинительный стержень.
- Принцип измерений

При измерении шероховатости поверхности детали, на поверхности детали располагают датчик и проводят им по поверхности с постоянной скоростью. Датчик воспринимает неровности поверхности острым пером. Неровности поверхности вызывают смещения в датчике, в результате чего изменяется индуктивность катушки, которая генерирует аналоговый сигнал, пропорциональный размерам неровностей. Сигнал поступает на фазочувствительный выпрямитель. После усиления и преобразования уровня этот сигнал поступает в систему сбора данных. Собранные данные подвергаются цифровой фильтрации и микросхема цифровой обработки сигналов производит расчёт параметров. Результаты измерения можно считать на жидкокристаллическом дисплее, распечатать на принтере и передать на персональный компьютер.

1.1Стандартный комплект поставки

Таблица 1-1

Перечень стандартного комплекта поставки

Наименование	Количество
Стандартный датчик	один
Блок обработки	один
Стандартная образцовая пластина	одна
Зарядный блок	один
Соединительный кабель RS232	один
Чехол для датчика	один
Регулируемая подставка	одна

Измеритель шероховатости TR200. Инструкция 1.2Название каждой части прибора

Рисунок 1-1-2 Вид спереди на прибор

1.3Основной способ соединения

1.3.1 Подсоединение и отсоединение датчика

При установке датчика возьмите в руку его корпус, вставьте его в паз на дне прибора, как показано на рисунке 1-2 и с лѐгким нажимом введите его в паз до конца. При отсоединении датчика, возьмитесь рукой за корпус датчика или за основание защитной трубки и плавно выньте его.

Замечания: 1. Перо датчика является основной частью данного прибора и требует особого внимания.

2. При подсоединении и отсоединении к перу нельзя прикасаться, чтобы не повредить его и не провести ошибочные измерения.

3. Соединение датчика должно быть надежным.

1.3.2 Зарядный блок и зарядка аккумуляторных батарей

Когда напряжение на батареях становится слишком низким (при этом на экране мерцает символ батарейки, сигнализируя о низком напряжении) прибор, при первой возможности, необходимо поставить на зарядку. Как показано на рисунке 1-3, штекер зарядного блока нужно вставить в разъем питания прибора. Зарядный блок подсоединяют к сети 220 В 50 Гц и процесс зарядки начинается. На вход зарядного блока подается переменный ток 220 В, а на выходе получают постоянный ток 6 В с максимальным током зарядки 500 мА. Время зарядки – 2,5 часа Прибор снабжен литиевыми аккумуляторными батареями без эффекта памяти и зарядку можно проводить в любое время. Процесс зарядки не оказывает никакого влияния на нормальную работу прибора.

Рисунок 1-3 Подключение зарядного блока

Замечания: 1. При зарядке провода не должны находиться рядом с деталью, на которой производятся измерения.

2. Значение индикаций напряжения аккумуляторной батареи:

сигнализирует о слишком низком напряжении и о том, что при первой возможности необходимо провести подзарядку;

показывает, что аккумуляторная батарея заряжается;

показывает, что процесс зарядки окончен и необходимо, как можно быстрее, отключить зарядный ток;

Когда процесс зарядки завершается, источник питания становится источником электромагнитных шумов относительно высокого уровня, что может оказать воздействие на слабый измерительный сигнал;

4. Прибор отслеживает процесс зарядки сам, так что нет необходимости выключать его. Прибор включится автоматически, даже если он был выключен.

2 Проведение измерений

2.1Подготовка к измерениям

- а. Включите прибор, чтобы проверить состояние аккумуляторных батарей;
- b. Очистите поверхность детали, которая подлежит измерениям;
- с. Правильно расположите прибор на измеряемой поверхности, руководствуясь рисунком 2-1 и рисунком 2-2. Его положение должно быть устойчивым и надежным;

Рисунок 2-1 Вид спереди

Рисунок 2-2 Вид сбоку

d. В соответствии с рисунком 2-3, траектория датчика должна быть перпендикулярна по отношению к направлению линий обработки на измеряемой поверхности.

Рисунок 2-3 Направление измерений

Рекомендация: Правильные действия, соответствующие предписанию, – залог точности результатов измерений. Пожалуйста, придерживайтесь этого правила.

2.2Базовый режим измерений

Чтобы включить прибор нажмите клавишу питания . Прибор автоматически отобразит модель, название и информацию о производителе, а затем перейдет к базовому режиму измерений, как показано на рисунке 2-4.

Рекомендация: Параметры базового режима измерения выводятся при самом первом включении (или после возврата в исходное состояние) – это установки, принимаемые прибором по умолчанию. При последующих включениях прибор отображает условия измерения и данные, которые были на момент его последнего выключения. Базовый режим измерений устанавливается автоматически при каждом включении (как показано на рисунке 2-4).

В базовом режиме измерений можно выполнить следующие операции:

• Измерение

Рисунок 2-5 Процесс измерений

Ввод через меню режима работы

Чтобы ввести через меню режим работы, нажмите на клавишу сание смотрите ниже в соответствующих главах и разделах.

. Подробное опи-

Œ

• Отображение измеренных параметров

Чтобы отобразить значения всех параметров данного измерения, нажмите один раз на клавишу **Ra**MM . Для просмотра листов, нажмите на клавиши прокрутки . Для отображения графиков профиля данного измерения, повторно нажмите на клавишу

RaMM. Для просмотра графиков для других базовых длин, нажмите на клавиши прокрут-

ки. Для отображения кривой t_p и значения параметра t_p, нажмите на клавишу **Ra**MM в третий раз. При последующих нажатиях на эту клавишу всè выше описанное повторится. Чтобы в любой момент вернуться к режиму базовых измерений, нажмите на клавишу выхода

Рисунок 2-6 Отображение параметров

Отображение положения пера

Чтобы отобразить положение пера нажмите на клавишу ввода — , которая обеспечит быстрый доступ к такому режиму отображения. С помощью быстрого доступа легко переходить в такой режим отображения при проведении измерений на практике.

Рекомендация: 1. Прибор при выключении автоматически запоминает результаты и условия последнего измерения и автоматически вводит их при повторном включении.

2. После ввода базового режима измерений нажмите на клавишу запуска

для начала измерений, если условия измерений не нуждаются в замене.

3. Если положение пера близко от границы диапазона, или заходит за неè, слегка подрегулируйте положение датчика. Не забывайте про требования раздела **2.1 Подготовка к измерениям** (регулировка вовсе не подразумевает капитальную перестановку датчика)

крутки 🖸 🖾 для изменения другого подпункта.

Находясь в базовом режиме измерений, нажмите на клавишу меню _____ для ввода режима меню. Для выбора пункта меню нажмите на клавишу прокрутки , а для вывода на экран отдельного пункта меню нажмите на клавишу ввода _____. При отображении отдельного пункта меню все условия измерений можно изменить (как показано на рисунке 2-8).

Рисунок 2-8 Выбор пункта меню для изменения условий измерений

2.3.1 Базовая длина

После выбора режима отображения отдельного пункта меню с помощью клавиш прокрутки выберите подпункт «Базовая длина». Нажимая на клавишу ввода вы получите циклическое отображение значений 0,8 мм → 2,5 мм → авто →0,25 мм (как показано на рисунке 2-8). Остановитесь на нужном значении и нажмите на клавишу про-

2.3.2 Длина оценки

После ввода режима отображения меню с помощью клавиши меню прокрутки выберите установку условий измерений. Для ввода режима отображения установок условий измерений нажмите на клавишу ввода и с помощью клавиш прокрутки выберите пункт установки длины оценки "n*Cutoff (n * отсечка шага). Для циклического отображения 1 → 2 → 3 → 4 →5 (как показано на рисунке 2-9) нажмите на клавишу ввода . Остановитесь на нужном значении и нажмите на клавишу прокрутки ля изменения другого подпункта.

Рисунок 2-9 Изменение длины оценки

Рекомендация: При автоматической установке базовой длины, длина оценки автоматически отображается в пять раз большей. Это значение не может быть изменено.

2.3.3 Стандарт

Рисунок 2-10 Изменение стандарта

Таблица 2 Обозначение и название стандарта

Обозначение	Название стандарта
ISO 4287	Международный стандарт
DIN 4768	Германский стандарт
JIS B601	юнский промышленный стандарт
ANSI B46.1	Американский стандарт

2.3.4 Диапазон

После ввода режима отображения меню с помощью клавиши меню Ц , клавишами прокрутки выберите установку условий измерений. Для ввода режима отображения установок условий измерений нажмите на клавишу ввода и с помощью клавиш прокрутки выберите пункт установки диапазона. Для циклического отображения ±20µm → ±40µm → ±80µm → auto нажмите на клавишу ввода .

Рисунок 2-11 Установка диапазона

2.3.5 Фильтр

Рисунок 2-12 Установка фильтра

2.3.6 Параметр шероховатости

Рисунок 2-13 Установка отображаемых параметров

2.4Системные установки

После ввода режима отображения меню с помощью клавиши меню <u></u>, клавишами прокрутки выберите системную установку. Для ввода режима отображения системных установок нажмите на клавишу ввода <u></u>. Измените системные установки (как показано на рисунке 2-14).

Рисунок 2-14 Выбор системных установок

2.4.1 Язык

После ввода режима отображения меню с помощью клавиши меню <u>F</u>, клавишами прокрутки выберите системную установку. Для ввода режима отображения системных установок нажмите на клавишу ввода <u>res</u> и с помощью клавиш прокрутки <u>sbife</u> выберите пункт Language (Язык). Для ввода этого пункта нажмите на клавишу ввода <u>res</u> и с помощью клавиш прокрутки <u>sbife</u> выберите нужный язык. Для подтверждения выбора нажмите на клавишу ввода <u>res</u>.

Рисунок 2-15 Выбор языка

2.4.2 Единицы измерения

После ввода режима отображения меню с помощью клавиши меню прокрутки выберите системную установку. Для ввода режима отображения системных установок нажмите на клавишу ввода и с помощью клавиш прокрутки выберите пункт "Unit"(Единицы измерения). С помощью клавиши ввода произведите переключение с режима метрических единиц измерения на систему британских единиц измерения и наоборот.

Рисунок 2-16 Выбор между метрической и британской системой единиц измерения

Измеритель шероховатости TR200. Инструкция 2.4.3 Дисплей

а. Подсветка жидкокристаллического дисплея

После ввода режима отображения меню с помощью клавиши меню <u>F</u>, клавишами прокрутки выберите системную установку. Для ввода режима отображения системных установок нажмите на клавишу ввода <u>restricture</u> и с помощью клавиш прокрутки <u>restricture</u> выберите пункт "Backlight" (Подсветка). С помощью клавиши ввода <u>restricture</u> произведите переключение с режима "On" (Вкл.) на режим "Off" (Выкл.) и наоборот.

Замечания: Для включения подсветки нажмите на клавишу "On/Off " и удерживайте еè в течение 2 секунд.

b. Яркость жидкокристаллического дисплея

После ввода режима отображения меню с помощью клавиши меню <u></u>, клавишами прокрутки выберите системную установку. Для ввода режима отображения системных установок нажмите на клавишу ввода <u></u> и с помощью клавиш прокрутки <u></u> выберите пункт "LCD brightness" (Яркость жидкокристаллического дисплея). С помощью клавиши ввода <u></u> войдите в режим регулировки яркости жидкокристаллического дисплея, а с помощью клавиш прокрутки <u></u> отрегулируйте яркость до необходимого уровня.

Рисунок 2-18 Регулировка яркости жидкокристаллического дисплея

2.5Выбор функций

После ввода режима отображения меню с помощью клавиши меню . , клавишами прокрутки . , клавишае выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода . . После этого выберите нужную функцию.

Рисунок 2-19 Выбор функций

2.5.1 Печать

Перед печатью подсоедините к прибору с помощью соединительного кабеля принтер, как показано на рисунке 2-20 и установите работу принтера на режим «Онлайн».

Рисунок 2-20 Подсоединение принтера

Рекомендация: Данный прибор может работать только с принтерами компании Time серии ТА. Принтер TA210 распечатывает только значения параметров шероховатости. Принтер TA220s распечатывает значения параметров шероховатости, график профиля и график t_p.

а. Печать параметров шероховатости

После ввода режима отображения меню с помощью клавиши меню прокрутки Выберите выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода и с помощью клавиш прокрутки Выберите пункт печати параметров. Для распечатки всех измеренных параметров шероховатости нажмите на клавишу ввода (как показано на рисунке 2-19).

Рекомендация: Для распечатки всех параметров шероховатости в режиме базовых измерений нажмите на клавишу.

b. Печать параметров шероховатости и профиля.

После ввода режима отображения меню с помощью клавиши меню <u></u>, клавишами прокрутки выберите выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода <u></u> и с помощью клавиш прокрутки <u></u> выберите пункт печати параметров и профиля. Для распечатки нажмите на клавишу ввода <u></u>. Будут распечатаны все параметры шероховатости, изображение профиля после фильтрации и график t_o.

Рисунок 2-21	Выбор печати	параметров	шероховатости	и профиля
	•			

2.5.2 Первичный профиль

После ввода режима отображения меню с помощью клавиши меню . , клавишами прокрутки выберите выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода . и с помощью клавиш прокрутки . выберите пункт "Primary profile" (Первичный профиль). Для отображения первичного профиля (т.е. прямого профиля или исходного профиля) на жидкокристаллическом дисплее нажмите на клавишу ввода .

Измеритель шероховатости TR200. Инструкция Рисунок 2-22 Выбор первичного профиля

2.5.3 Положение пера

После ввода режима отображения меню с помощью клавиши меню прокрутки выберите выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода и с помощью клавиш прокрутки выберите пункт положение пера. Для отображения положения пера нажмите на клавишу ввода .

Рисунок 2-23 Выбор отображения положения пера

2.5.4 Калибровка

После ввода режима отображения меню с помощью клавиши меню прокрутки выберите выбор функций. Для ввода режима отображения выбора функций нажмите на клавишу ввода и с помощью клавиш прокрутки выберите пункт отображения величин калибровки. Для ввода режима калибровки нажмите на клавишу ввода и, с помощью клавиш прокрутки, измените калибровочные коэффициенты. Для перемещения курсора нажмите на клавишу ввода

Рисунок 2-24 Выбор отображения величин калибровки

Рекомендация: 1. При корректировке результатов измерений на случайной образцовой пластине, если измеренная величина превосходит на ±10% величину образцовой пластины, используйте режим отображения величины калибровки для проведения калибровки в соответствии с процентами реального отклонения – диапазон калибровки ±20%.

2. Как правило, прибор перед поставкой проходит тщательную проверку, так что нужно просто убедиться, что отображаемая величина ошибки намного меньше ±10%. В таком случае пользователю нет необходимости часто использовать режим отображения величины калибровки.

2.6Связь с персональным компьютером

Прежде чем выйти на связь с персональным компьютером, соедините прибор с последовательным интерфейсом персонального компьютера с помощью соединительного кабеля, как показано на рисунке 2-25, и введите в персональном компьютере специальное операционное программное обеспечение просмотра данных.

Рисунок 2-25 Подсоединение персонального компьютера

Рекомендация: Чтобы установить связь прибора с персональным компьютером используйте специальное программное обеспечение компании Time для просмотра данных (Time Data View).

3 Дополнительные вспомогательные приспособления и их использование

3.1Регулируемая подставка и чехол для датчика

При измерениях на поверхности детали, размеры которой меньше, чем донышко прибора, для дополнительной поддержки можно использовать чехол для датчика и регулируемую подставку, которые поставляются для прибора TR200 по отдельному заказу (как показано на рисунке 3-1 и 3-2).

Рисунок 3-1 Подсоединение регулируемой подставки и чехла для датчика

Замечания: 1. Размер L не должен быть меньше длины хода датчика при измерении, в противном случае в ходе измерений датчик может свалиться с детали. 2. Крепление регулируемой подставки на приборе должно быть надѐжным.

3.2Измерительная стойка

С помощью измерительной стойки серии ТА можно регулировать положение прибора относительно измеряемой детали, что одновременно обеспечивает гибкость и стабильность работы в широком диапазоне применений. Также с еè помощью можно измерять шероховатость на сложных поверхностях. Измерительная стойка серии ТА позволяет провести более точную регулировку положения пера и получить более стабильные результаты измерений. Если нужно измерить относительно низкие значения R_a, рекомендуется использовать измерительную платформу.

Рисунок 3-3 Измерительная платформа

Измеритель шероховатости TR200. Инструкция 3.3Удлинительный стержень

Удлинительный стержень увеличивает глубину ввода датчика в деталь. Длина удлинительного стержня – 50 мм.

Рисунок 3-4 Удлинительный стержень

3.4Соединительный стержень магнитной измерительной плиты

Соединительный стержень предназначен для установки прибора на магнитную измерительную плиту, чтобы сделать процесс измерения различных поверхностей детали гибким и легким, как показано на рисунке 3-5. В частности, данное приспособление подходит для использования в процессе производства.

Рисунок 3-5 Установка прибора на магнитной измерительной плите.

3.5Датчик для криволинейной поверхности

С помощью датчика для криволинейной поверхности можно проводить измерения на выпуклых и вогнутых поверхностях детали, как показано на представленном ниже рисунке. Измеритель шероховатости TR200. Инструкция Криволинейный датчик

4 Технические характеристики

4.1Датчик

Способ контроля:	Индукционный
Диапазон измерений:	160 мкм
Радиус кончика пера:	5 мкм
Материал пера:	Алмаз
Сила прижима при измерении:	4 мН (0,4 гс)
Угол заточки кончика пера:	90°
Радиус кривизны скользящего элемен- та:	45 мм

4.2Параметры перемещения

Максимальный диапазон перемеще- ния:	17,5 мм	
Скорость перемещения: при измерении	на базовой длине = 0,25 мм на базовой длине = 0,8 мм на базовой длине = 2,5 мм	V _t = 0,135 мм/с V _t = 0,5 мм/с V _t = 1 мм/с
при возврате		V = 1 мм/с

4.3Погрешность

Меньше или равна ± 10%.

Меньше или равна 6%.

4.5Изображение на дисплее

- 4.5.1 Меню: изменение условий измерений, отображение калибровочных величин и выбор режима связи с персональным компьютером или режима печати.
- 4.5.2 Параметры шероховатости: параметры шероховатости по одному из четырèх стандартов ISO (Международная организация по стандартизации), DIN (Германский институт стандартов), ANSI (Американский национальный институт стандартов) и JIS (Японский промышленный стандарт).
- 4.5.3 График: первичный профиль, профиль, подвергнутый фильтрации и кривая tp.
- 4.5.4 Экранная информация: измерения, советы меню, ошибки, ѐмкость аккумуляторных батарей и отключение экранной информации.

4.6Профиль и фильтрация

Таблица 3

Профиль	Фильтр
Профиль, подвергнутый фильтрации	RC
	PC-RC
	Gauss
Профиль, не подвергнутый фильтрации	D-P

4.7Базовая длина / отсечка шага

Автоматическая, 0,25 мм, 0,8 мм, 2,5 мм.

4.8Длина оценки

(1 ~ 5) * базовая длина.

4.9Параметр шероховатости и диапазон отображения

Параметр	иапазон отображения
R _a	
Rq	0,005 мкм ~ 16 мкм
Rz	
R _{3z}	
Rγ	
Rt	0,02 мкм ~ 160 мкм
Rp	
R _m	
S _k	0 ~ 100%
S	1 мм
Sm	
t _p	0 ~ 100%

Таблица 4

4.10Диапазон измерений и дискретность

Диапазон измерений	Дискретность
Автоматический	0,01 мкм ~ 0,04 мкм
±20 мкм	0,01 мкм
±40 мкм	0,02 мкм
±80 мкм	0,04 мкм

4.11Питание

Зарядный	Номинальная	мощ-	6 В, 500 мА
блок:	НОСТЬ:		
	Напряжение питан	ия:	220 B
Встроенная	я аккумуляторная батарея	(Литиев	ая батарейка)
-	Время зарядки:	2,5 י	laca
	Длительность непре-	боле	ее 20 часов
	рывной работы без под-		
	зарядки:		
	Функция автоматиче-	Изоб	бражение отключается, если ра-
	ского отключения	бота н	не производится в течение 5 ми-
		нут	

4.12Диапазон температуры / влажности

Рабочие условия:	Температура:		0 ~ 40° C
	Относительная	влаж-	< 90%
	ность:		
Хранение и транспортировка	Температура:		-40 ~ 60° C
	Относительная	влаж-	< 90%
	НОСТЬ:		

4.13Размеры и вес

Д х Ш х В 141 х 56 х 48 мм Масса: приблизительно 430 г

4.14Соединение с персональным компьютером

Стандартный последовательный интерфейс RS-232.

4.15Соединение с принтером

Работает только с принтерами компании Time серии ТА. Принтер TA210 распечатывает только значения параметров шероховатости. Принтер TA220s распечатывает значения параметров шероховатости, а также изображение профиля.

5 Техническое обслуживание

- Избегайте ударов, интенсивной вибрации, сильной запыленности, влажности, загрязнения смазкой и сильных магнитных полей;
- Датчик является прецизионной частью прибора и его необходимо тщательно оберегать.
 Каждый раз после работы убирайте его в ящик;
- Бережное отношение к стандартной образцовой пластине обеспечит точную работу прибора. Так как исключит возможность неверной калибровки, причиной которой могут быть царапины.

5.1 Диагностирование неисправностей

При сбоях в работе прибора проведите диагностирование неисправности по рекомендациям, изложенным в следующем разделе «Информация о неисправностях». Если сбой в работе не устраняется, пожалуйста, верните для ремонта прибор на завод-изготовитель. Пользователям не следует самим заниматься разборкой прибора и его ремонтом. При возврате к прибору следует приложить гарантийную карточку и образцовую пластину. Следует также разъяснить, какие проблемы у Вас возникли.

5.2Информация о неисправностях

Изображение на дисплее	Причина	Решение проблемы
Показания вы- ходят за гра- ницы диапазо- на Нет данных	Максимальное значе- ние сигнала измере- ния выходит за грани- цы диапазона изме- рений; Неправильные дейст- вия привели к непра- вильному измерению;	 Нажмите на клавишу выхода; Войдите в режим установок режима измерений, увеличьте диапазон измерений, опять нажмите на клавишу выхода; Повторно проведите измерение. Нажмите на клавишу выхода; Проверьте правильность подготовки к измерениям; Включите прибор и повторно проведите измерения
Проблемы с аналого- цифровым преобразова- нием	Дефект в схеме аппа- ратного обеспечения;	Вариант 1: Выключите прибор и опять включите его; Вариант 2: Нажмите на клавишу воз- врата в исходное состояние; Вариант 3: Верните прибор на завод- изготовитель для ремонта.
Проблемы с двигателем	Дефект в механиче- ской части прибора;	Вариант 1: Выключите прибор и опять включите его; Вариант 2: Нажмите на клавишу воз- врата в исходное состояние; Вариант 3: Верните прибор на завод- изготовитель для ремонта.
Проблемы с датчиком	Датчик находится в режиме автоматиче- ского возврата	 Нажмите на клавишу выхода и по- дождите, пока датчик вернется на стартовую позицию; Повторно проведите измерение.

Таблица 6

6 Возврат в исходное состояние

Когда на неисправности не оказывают действия рекомендации, изложенные выше в разделе «Информация о неисправностях», нажмите на клавишу возврата в исходное состояние(как показано на рисунке), и тогда все данные и установки вернутся в состояние, принимаемое по умолчанию.

Рисунок 6-1 Возврат в исходное состояние

7 Справочные материалы

7.1Профиль и фильтр

7.1.1 Профиль

- а. Первичный профиль: сигнал профиля, полученный датчиком с измеряемой поверхности и не подвергавшийся фильтрации.
- b. Профиль, подвергавшийся фильтрации: сигнал первичного профиля после того, как он подвергся фильтрации с целью устранения волнистости.

7.1.2 Фильтр

- a. RC фильтр: аналогичен 2Rc фильтру с разностью фаз;
- b. PC-RC фильтр: RC фильтр с фазовой коррекцией;
- с. Фильтр Гаусса: DIN4777;
- d. D-P (прямой профиль): выбор средней линии с помощью алгоритма наименьших квадратов.

7.2Средняя линия

Прибор TR200 выбирает среднюю линию с помощью алгоритма наименьших квадратов.

7.3Базовая длина

7.3.1 RC фильтр

Измеритель шероховатости TR200. Инструкция 7.3.2 РС-RС фильтр

7.3.3 Фильтр Гаусса

7.3.4 D-Р Прямой профиль

7.4Определения параметров шероховатости для прибора TR200

- В данном разделе представлены определения параметров шероховатости для прибора TR200.
- 7.4.1 Ra Среднее арифметическое отклонение профиля
 - R_a среднее арифметическое абсолютных значений отклонения профиля (Y_i) от средней линии в пределах длины оценки.

- 7.4.2 R_q Среднеквадратичное отклонение профиля
 - R_q квадратный корень из среднего арифметического квадратов значений отклонения профиля (Y_i) от средней линии в пределах длины оценки.

$$R_q = \left(\begin{array}{cc} \frac{1}{n} & \sum_{i=1}^n & y_i^2 \end{array}\right)^{\frac{1}{2}}$$

7.4.3 R_z Высота неровностей профиля по десяти точкам

Среднее от суммы высоты пяти наибольших выступов профиля и глубины пяти наибольших впадин профиля в пределах длины оценки.

- 7.4.4 R_v (ISO) Наибольшая высота профиля
 - R_y сумма высоты R_p наибольшего выступа профиля относительно средней линии и глубины R_v наибольшей впадины профиля относительно средней линии в пределах длины оценки.

7.4.5 R_v (DIN) Наибольшая высота профиля

Чтобы получить значение R_y (DIN) сначала производят расчèт R_{yi} для каждой базовой длины, а потом выделяют из них максимальную, которая и является R_y (DIN) в пределах длины оценки

7.4.6 Rt Общая высота неровностей

R_t – сумма высоты наибольшего выступа и глубины наибольшей впадины в пределах длины оценки

7.4.7 Rp Высота наибольшего выступа профиля

R_p – расстояние от вершины наибольшего выступа профиля до средней линии в пределах длины оценки.

7.4.8 Rm Глубина наибольшей впадины профиля

- R_m расстояние от дна наибольшей впадины профиля до средней линии в пределах длины оценки.
- 7.4.9 Sm Средний шаг неровностей профиля
 - S_m средний шаг точек пересечения выступов с средней линией в пределах длины оценки.

7.4.10 S Средний шаг местных выступов профиля

S – средний шаг по соседним вершинам выступов профиля в пределах длины оценки.

7.4.11 tp Относительная опорная длина профиля

Опорная длина профиля η_p- сумма длин отрезков, отсекаемых на заданном уровне в материале профиля линией, отстоящей от средней линии на величину с.

t_p – отношение опорной длины профиля на глубине с к длине оценки.

$$t_p = \frac{\eta_p}{l}$$

- 7.4.12 Sk Асимметрия профиля
 - S_k частное от деления среднего значений отклонения профиля (Y_i) в третьей степени и R_q в третьей степени в пределах длины оценки.

$$S_k = \frac{l}{R_q^3} \times \frac{l}{n} \sum_{i=1}^n \left(y_i \right)^3$$

- 7.4.13 R_{3z} Высота неровностей по трèм максимальным значениям
 - R_{3z} среднее суммы высоты трѐх максимальных выступов профиля и глубины трѐх максимальных впадин профиля для каждой базовой длины в пределах длины оценки.